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1    Project Goals: 

The Cosynthesis at Board and MCM Levels for Digital Signal Processors (COMET) Project is a 
RASSP Technology Base Program at the University of Cincinnati. RASSP (Rapid Prototyping 
of Application Specific Signal Processors) is an Advanced Research Projects Agency, Electronic 
Systems Technology Office (ARPA/ESTO) program. The COMET project is monitored by the US 
Air Force Wright Laboratory under contract number F33615-93-C-1316. 

The goal of the COMET project is to develop languages, techniques and tools for hardware, soft- 
ware cosynthesis of board- and MCM-level Digital Signal Processing (DSP) systems from very high 
level requirements specifications. A second goal is to develop a usage guide for the Level 2 Wave- 
form and Vector Exchange Specification (WAVES) language. The COMET project includes the 
development of, (1) VSPEC, a declarative interface requirements specification language for VHDL 
entities, (2) hardware/software cosynthesis techniques for embedded DSP systems, (3) hierarchi- 
cal multi-technology hardware partitioning tools, (4) software compilation techniques to compile 
behavioral VHDL into C, (5) a WAVES Level 2 usage guide and (6) exploring WAVES usage in 
conjunction with BSDL and for hierarchical testing. 

COMET project statement of work is as follows: 

1. Extend VHDL to create VSPEC Specification Language (Requirement 3.2) 

2. Develop technology driven VSPEC partitioner (Requirement 3.3) 

3. Develop VSPEC-Embedded software Translator (Requirement 3.4) 

4. Integration and distribution (Requirement 3.5) 

5. WAVES usage guide for electronic module design development (Requirement 3.6) 



2    Accomplishments 

The accomplishments of the COMET project are summarized as follows: 

1. VSPEC Development (CDRL A007) 

VSPEC as developed under this effort is a Larch interface language for VHDL. VSPEC 
provides a declarative specification mechanism for defining: (i) axiomatic requirements, (ii) 
activation conditions (in) internal state, (iv) constraints, and (v) abstract architectures for 
systems. VSPEC is fully compatible with VHDL and provides requirement definitions for the 
interfaces of entities, functions and procedures. 

With the language definition complete a formal semantics for VSPEC was defined using the 
Larch Shared Language (LSL). This formal semantics is used to precisely define what VSPEC 
means and for verification. The VSPEC parser is being extended currently to generate LSL 
directly for use in verification tools. 

2. VSPEC Partitioner (CDRL A008) 

Several partitioning approaches were developed under this project. Notable of these were the 
REBOUND tool and the genetic partitioner for codesigns. 

The REBOUND tool generates structural architectures. Accordingly, in the current version 
of the hardware/software partitioning tool, concurrent statements are limited to components. 
The approach is, however, extensible to other concurrent statements such as processes and 
blocks as well. 

The genetic partitioner contemplates hardware software codesigns based on a relaxation- 
based retiming strategy. The partitioner explores a large number of hardware alternatives 
and hardware/software bindings. To aid this process, a detailed performance estimator for 
pipelined and nonpipelined codesigns has been developed. 

3. VSPEC-Embedded Software Translator 

Two tools for software synthesis were developed as a part of this effort. The first was a 
stand-alone parser developed around an ad hoc VHDL front end. This system generated 
code for the Texas Instruments TMS320 series DSP processor. Example systems included: 
(i) a compander system, (ii) an FFT subsystem, (iii) an IFFT subsystem, and (iv) an Iffi. 
filter. Each example was coded in VHDL-S, synthesized into C and evaluated on a TMS320 
prototyping system. 

The examples synthesized generated the capability to generate C for the VHDL-S subset. 
Further, the initial example set demonstrated the ability to generate: (i) a generic operating 
system kernel, and (ii) interface routines to support executing the C code. VHDL is inherently 
parallel in nature while C is inherently sequential. Each VHDL-S process is transformed into 
a C process by the translator. These processes are managed by the simple operating system 
using message passing for interprocess communication. C routines are also generated to 
manage interfaces between software and associated hardware devices. This is primarily used 
for I/O associated with the DSP processor. 

The second software translation system took the initial results from the stand alone parser 
and incorporated them into the SAVANT environment. The SAVANT environment provides 
a much richer and more stable platform for building the translator.  The object model was 



extended to include C publishing routines and additional enhancements were added. The 
most significant addition was the ability to generate generic C from VHDL-S. The generic C 
code is standard C with TMS320-specific additions. The this code was tested on both Solaris 
and Linux platforms. 

The final translator delivered here can generate code for either the TMS320 or a generic C 
system. It is based on the SAVANT toolset, but has not been ported to the most current 
SAVANT release. 

Integration and Distribution 

All VSPEC software has been integrated and transferred to VHDL community by publica- 
tions, presentations and repository access. The software can be accessed by anonymous File 
Transfer Protocol (FTP) by contacting the PI of this project. Several publications resulting 
from this project are appended in this report. 

WAVES Usage Guides (CDRL A009) 

A WAVES Level-2 usage guide has been developed. In addition, two detailed case studies 
illustrating the use of WAVES Level-2 have been developed. A document describing the use 
of WAVES for testing boundary scan devices has been developed. A final document has been 
written describing the use of WAVES in conjunction with BSDL. 



APPENDIX A : 
Board and MCM Level Synthesis for Embedded Systems: 

The COMET Cosynthesis Environment * 
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Cincinnati, Ohio 45221-0030 

Ph: 513-556-4784; Email: ranga.vemuri@uc.edu 

Abstract 

COMET is a cosynthesis environment for application- 
specific electronic signal processing modules. COMET is 
capable of automatically synthesizing multicomponent 
hardware-software systems at the board- and MCM- lev- 
els. In the COMET environment, system-level specifi- 
cations are written in VSPEC, a declarative annotation 
language for VHDL entities. COMET contains various 
VHDL-centered tools for hardware-software partition- 
ing, MCM synthesis, ASIC synthesis, software compi- 
lation and performance analysis, and various WAVES- 

centered tools for board, MCM- and ASIC level testing. 

1    Overview 

COMET (Cosynthesis at Board and MCM Levels 
for Digital Signal Processors) is a hardware-software 
cosynthesis environment for embedded signal process- 
ing modules, COMET users can synthesize single board 
application-specific DSP (digital signal processing) ar- 
chitectures. These target architectures, illustrated 
in Figure 1, can contain application-specific ASICS, 

FPGAs, MCMS, and off-the-shelf hardware components 
along with an off-the-shelf processor which executes 
applications-specific software as well as other kernel 
functions. 

The users' view of COMET is shown in Figure 2. In a 
typical top-down design process, COMET users begin 
by writing a specification of the system's functional 
requirements and constraints in VSPEC. Then, using 

"The research reported in this paper is being conducted at 
the University of Cincinnati and is supported in part by by the 
ARPA RASSP program monitored by the Wright Lab, US Air 
Force under contract no. F33615-93-C-1316 and by the Solid 
State Electronics Directorate of the Wright Laboratory of the 
US Air Force under contract number F33615-91-C-1S11. 

the hardware-software partitioning tool, a top-level 
hardware-software architecture is generated. The par- 
titioning tool uses a library of reusable components. 
Each component is a DSP algorithm bound or to be 
bound to hardware or software. The component li- 
brary also contains a set of off-the-shelf processors. 
The output of the partitioning tool is an architecture 
of hardware and software components whose behav- 
ior is specified in procedural VHDL. In addition, the 
software components are bound to an off-the-shelf pro- 
cessor and the hardware components are bound to var- 
ious ASIC and packaging technologies. Hardware com- 
ponents in the design are submitted to hardware syn- 
thesis tools and the software components to software 
synthesis tools. An interface synthesis tool is used 
to synthesize all the interface logic to support inter- 
component hardware-software communication proto- 
cols. An architecture integration tool composes the 
various components into a coherent board-level design 
that can be processed by commercial board-level place 
and route tools. 

COMET environment also contains test generation 
tools based on WAVES and performance analysis tools. 
COMET tools are also interfaced to various commercial 
and university tools, especially from the RASSP com- 
munity, to facilitate simulation, logic synthesis, syn- 
thesis of board-level glue logic and ASIC, MCM and 
board-level layout synthesis. 

2    "VSPEC Specification Language 

VSPEC is a declarative annotation language for VHDL 
entities. Through VSPEC designers specify require- 
ments the system design should meet and constraints 
on its implementation. A VSPEC specification consists 
of a collection of logical statements and declarations 
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Figure 2: COMET Cosynthesis Environment 

that annotate a VHDL entity construct. Consider the 
following entity specification of a multiplexor: 

entity mux is 
port ( dO, dl,  cntrl :  in bit; 

output :  out bit ); 
end muz; 

In this example, the entity names the device and de- 
fines input and output ports. However, there is no 
indication of how the multiplexor functions or what 
performance constraints it must adhere to. A VHDL 

architecture describes the behavior or structure of 
an entity. Behavior can be described through com- 
municating and concurrently executing sequential pro- 
cesses. Structure can be described through component 
instantiation and interconnection, VHDL allows the 
user to specify the behavior of a system by defining 
a single artifact (architecture) embodying that be- 
havior. Although alternative behaviors may be spec- 
ified by multiple architectures of the same entity, 
these architectures must be explicitly enumerated. 
Therefore, implementational biases occur while for- 
mulating the functional requirements since the user 
is forced to commit to one or more designs. 

The VSPEC language was developed to support the 
definition of requirements prior to the specification 
of designs, VSPEC has constructs to allow its users 
to declaratively specify input pre-conditions, output 
post-conditions, state variables, constraints, and other 
requirements at the entity level. The following is a 
VSPEC definition of a simple multiplexor: 

entity mux is 
port ( dO, dl, cntrl : in bit; 

output : out bit ); 
ensures 

output = ((dO and cntrl) or 
(dl and not cntrl)); 

constrained by 
power < 4 and 
size < 20 

end mux; 

This VSPEC entity describes the interface to the com- 
ponent as well as the desired function and constraints. 
The ensures clause declaratively states the function 
of the multiplexor. This definition allows many differ- 
ent implementations to be developed for this specifica- 
tion as long as the specification meets the requirement 
stated here. The constrained by clause specifies con- 
straints placed on the power and area of the entity. 



The VSPEC interface language affects only the VHDL 
entity declaration. Six VSPEC clauses are allowed in 
the entity: 

• assumes logical-expression; 

Describes the pre-conditions that must be met 
before this entity can be used. The logi- 
cal-expression is denned over the set of inputs of 
the device. 

• ensures logical-expression; 

Describes post-conditions that must be true 
when the entity functions correctly. The logi- 
cal-expression is denned as a relation between the 
inputs of the device and its outputs. 

• constrained by logical-expression; 

Describes the constraints placed upon the entity. 
These constraints include size, timing, heat dissi- 
pation, power consumption and clock speed. The 
logical-expression is defined over pre-defined vari- 
ables representing potential constraints. 

• state typedJdentifierJist; 

A list of typed variables used to store the state of 
the entity. These variables maintain their values 
from one entity invocation to the next. 

•. modifies identifier-list ; 

List of variables and signals this entity can mod- 
ify. All elements listed must be denned in the 
state clause or in the entity's port declaration 
and of type out, inout, or buffer. 

• VSDL-type based on logical-expression; 

Associates a user defined VHDL type with a for- 
mal, logical definition. This allows inferences in- 
volving user defined types. 

Architectures in VSPEC A general architecture 
is a collection of interconnected high level specifi- 
cations that serves as a template for system defi- 
nition. The general requirements of each compo- 
nent are known, the interaction between them is 
known, but the specifics of the implementation may 
not be known. The VHDL architecture construct 
supports specification of interconnections among en- 
tities. Whether the entity structures referenced by 
the architecture have associated architectures deter- 
mines whether there are just requirements or designs 
associated with each entity. 

Figure 3 shows a specification of a batch sequential 
sort and search system. The entity structures associ- 
ated with each component in batch-seq are specified 
using VSPEC with no specific associated algorithm. 
The sort component must produce a sorted output and 
the search component must find a key given a sorted 
input. Algorithms for each, perhaps in the form of 
behavioral architectures, must be specified at a later 
time. 

VSPEC Support Environment AU VSPEC ex- 
pressions translate into REFINE declarations. These 
declarations support a formal inference process, exe- 
cutable specifications and REFINE based software syn- 
thesis tools. REFINE is a language that allows pro- 
grammers to write code in a wide range of styles. This 
includes high level constructs such as sets and trans- 
formation rules down to more traditional procedural 
language constructs such as loops and if-then state- 
ments [1]. REFINE specifications are executable. This 
allows designers to test their system at a very early 
point in the design process. 

3    System Performance Estimation 

Accurate performance estimation is critical to the suc- 
cess of a design synthesis system. The COMET perfor- 
mance estimator is used to evaluate the performance, 
in terms of area, speed, throughput rate, and power 
dissipation, of the library components as well as the 
performance of a contemplated hardware-software ar- 
chitecture of a system. The estimator can be used 
interactively or through the partitioning engine to fil- 
ter inferior architectures and to select a constraint- 
satisfying hardware-software binding for a given spec- 
ification. As shown in Figure 4, various hardware- 
software alternatives can be selected for each compo- 
nent in the architecture and for each selected configu- 
rations performance envelopes can be generated. 

Hardware Performance Estimation: Perfor- 
mance estimation for hardware components is done 
by detailed analysis of the operational behavior of 
the component. A data-flow control-flow graph (DFG) 

is extracted from the behavioral specification. The 
DFG is scheduled across control-steps using register 
level hardware modules selected from a module li- 
brary. From this scheduled and operator-bound DFG 
accurate estimates of area, clock-speed and through- 
put rate are made. Estimation of power consumption 
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entity example is 
port (list: in array of element; 

k: in integer; 
output: out element); 

modifies output; 
ensures 

(fa e:element) 
(output = e) <=> 

(e in input and 
k = key(e)); 

end example; 

architecture batch-seq of example is 
component sorter is 
sort 
port (inlist: in array of element; 

outlist: out array of element); 
component searcher is 
bin_search 
port (inlist: in array of element; 

value: in integer; 
return: out element); 

begin 
bl: sorter 

port map (list,tmp); 
b2: searcher 

port map (tmp,k,output); 
end batch-seq; 

entity sort is 
port  (input:  in array of element; 

output: out array of element); 
modifies output; 
ensures 

bag(output) = bag(input) and 
ordered(output); 

end sort; 

entity bin_search is 
port  (input: in array of element; 

k:  in integer; 
output: out element); 

modifies output; 
assumes 

ordered(input); 
ensures 

(fa e:element) 
(output = e)  <=> 

(e in input and 
k = key(e)); 

end bin_search; 

Figure 3: Batch sequential architecture for finding a 
value in a list. 
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Figure 4: Performance Estimation 

is based on the generation of profile data for typical 
stimuli of the component. The profile data is used 
to generate estimates of switching activity in the final 
design. Data from a technology library that contains 
both ASic fabrication and packaging technology pro- 
files is used to generate concrete technology-dependent 
estimates from the abstract estimates. Some of the 
hardware performance estimation work has been done 
as part of the Mss and DSS projects [3, 2]. 

Software Performance Estimation A static per- 
formance evaluation method based on ISA and code 
models is being developed to provide estimates of 
DSP software execution time. These estimates will be 
used to guide system and software partitioning such 
that timing constraints can be satisfied by the soft- 
ware synthesis algorithms. Once software has been 
created and compiled, the machine code is evaluated 
to assess whether timing constraints and throughput 
requirements have been satisfied. The static perfor- 
mance evaluation method consists of two graph the- 
oretic models: (1) a pipelined instruction execution 
time (PIET) model which is accurate to the clock cycle 
level, and (2) an instruction stream execution graph 
(ISEG) model. The PIET model is constructed for 
each processor with a unique instruction set architec- 
ture and takes into account all data path dependen- 
cies including inter-instruction dependencies for accu- 
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Figure 5: Software Performance Evaluation 

rate time evaluation. The IS EG model is constructed 
for each software program being analyzed and is di- 
rectly generated from the machine language instruc- 
tion stream. The ISEG model evaluates all data and 
control paths within the instruction stream during its 
formation. 

The flow of activities to perform static performance 
evaluation is shown in Figure 5. The objective is to 
obtain the estimated time of execution between any 
two points in the instruction stream. This time is 
obtained as an aggregate of the individual operation 
times of each instruction in the instruction stream 
given the PIET model of the ISA of the target proces- 
sor. All pipelined activity and potential hazards are 
considered. The execution of each successive sequen- 
tial instruction is evaluated until a branch instruction 
is seen. These successive sequential instructions are 
grouped into into basic blocks. The number of ma- 
chine cycles for each basic block is determined using 
the PIET graph. The ISEG graph is created as a stan- 
dard control flow graph where basic blocks and branch 
instructions are represented as nodes in the graph. 
Edges in the graph represent flow of control. 

The determination of execution time between any two 
nodes in the graph proceeds by iteratively reducing 
the flow network between the two nodes until the two 
nodes are merged into a single node. Each reduction 

step proceeds by first examining the flow network and 
identifying a basic structure which can be reduced, 
followed by computing the execution time of basic 
structure and reducing the structure to a single node 
whose label is the derived execution time. Branches 
and loops are assessed based on the branch taken/not 
taken probabilities which are in turn obtained from 
the benchmark data patterns at the inputs of the soft- 
ware being evaluated. Note that this data is usually 
expressed in worst-case terms if worst-case execution 
performance estimates of the software is desired. If 
the estimated execution time of the entire software 
program is desired, the entire ISEG graph is reduced 
to one node by the graph analysis algorithm. The esti- 
mated execution time can then be compared with the 
timing constraints of the system to determine if the 
synthesized software satisfies the performance goals. 

Reusual Behavioral Components COMET uses 
a library of reusable hardware, software or unbound 
components for synthesis. Performance of each li- 
brary component is characterized using the same per- 
formance estimation tools described above. System 
synthesis in COMET is dependent on the availability of 
one or more library components for each function spec- 
ified in VSPEC. If a VSPEC function in a specification 
has no corresponding component in the library, then 
the user is asked to supply a component along with its 
operational behavior description in VHDL. The perfor- 
mance of the description for various target hardware 
and software technologies will be evaluated using the 
performance estimation and the component along with 
this data will be stored in the library for later use (Fig- 
ure 6). 

4    System Partitionin 

The goal of system partitioning is to generate a first 
level hardware-software architecture of the system by 
partitioning the system specification into specifica- 
tions of hardware components and software compo- 
nents. The hardware components will be further pro- 
cessed by hardware synthesis tools. The software com- 
ponents will be bound to execute on a selected DSP or 
general purpose processor configuration. The hard- 
ware and software components will be connected to 
constitute a VSPEC-VHDL architectural description of 
the system. The functional requirements and con- 
straints stated in the VSPEC specification drive the 
derivation of the specific hardware-software mix. Fig- 
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Figure 7: System Partitioning in COMET 

ure 7 shows the system partitioning tool in COMET. 

Initially, the VSPEC system specification is refined 
based on queries into the design library. As a result 
of the queries, components are selected based on their 
ability to satisfy the system function and constraint 
attributes. In case the existing components do need 
meet the requirements, a design that partially satisfies 
the requirements may be generated. Alternatively, the 
designer may be queried for additional components. 

Figure 6:    Performance  Analysis for  Library 
Components 

5    Hardware Synthesis 

COMET hardware synthesis system consists of a multi- 
component partitioning engine and a set of synthesis 
tools for ASIC, FPGA and MCM synthesis (Figure 8). 

Multicomponent Partitioning Engine The par- 
titioning engine is a hierarchical partitioning and 
package binding tool that accepts behavioral specifi- 
cations in VHDL, constraints on area, power consump- 
tion, pin counts, speed and cost and generates a hier- 
archical partition of the specification with each com- 
ponent in the partition bound to a package among 
a set of available packages. The partitioning engine 
uses a back-tracking algorithm for,constraint-directed 
search. Power estimation is based on data gathered 
by dynamic profiling of the VHDL specification using 
typical stimuli. 
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Figure 8: Hardware Synthesis Flow in COMET 
Figure 9: DSS High Level Synthesis System 

High Level Synthesis of ASICs: DSS The ASIC 
synthesis system DSS (Distributed Synthesis System) 
accepts behavioral specifications in VHDL and con- 
straints on clock period and area. It generates register 
level designs in VHDL. Register level designs contain 
two parts: a data path and a finite state controller. 
The data path is in the form of structural VHDL in 
which each component is instantiated from a prede- 
fined parameterized register level component library. 
DSS architecture is shown in Figure 9. For an overview 
of the DSS system, see [2]. 

Register level designs generated by DSS can be pro- 
cessed using various layout synthesis tools including 
Lager IV and Mentor Graphics' GDT tools. Figure 10 
shows design flow using the DSS system. Test vectors 
for register-level and switch-level simulations are auto- 
matically created using a test-bench compiler. Figure 
11 shows the design a processor (Move Machine) gen- 
erated by DSS. DSS has been used to generate numer- 
ous designs including some industrial strength designs 
by Texas Instruments [4]. 

VHDL Simulator 

 1  

Tulbencfc 

VHOLConpenent 
Library (RT-Level) 

___^ «• tj—Mj * l««la »yacfcaali 

Skueunl 
Synthe« 
SywWn 

OH Generator 
Library 

Saritch-Level 
Simtxator 

MCM Synthesis:   MSS    MCM synthesis environ- 
ment MSS [3] is embedded in COMET to facilitate syn- 

Figure 10: ASIC Synthesis Using DSS 
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Figure 11: Move Machine 

thesis of multichip modules. The tools in the MSS 

environment are shown in Figure 12. Behavior spec- 
ifications for MSS are written in VHDL. Performance 
descriptions are written in PDL (Performance Descrip- 
tion Language) [5, 6]. Multichip designs can be gener- 
ated in two ways. As shown in Figure 12, register level 
designs generated by DSS can be partitioned into mul- 
tiple chip designs. Alternatively, as shown in Figure 
13 an integrated behavior synthesis and partitioning 
step can be performed to obtain multichip designs di- 
rectly. These multichip designs are then processed by 
package level place and route tools. We currently use 
Mentor Graphics MCM Station and plan to use Harris 
EDA Finnesse system in near future. Figure 14 shows 
the MCM design of the Find processor generated using 
the MSS tools. 

Anporant 
Utfv.VMOL 
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6    Software Synthesis 
Figure 12:  Multicomponent Synthesis System, 
MSS 

The software synthesis tools in COMET translates DSP- 

based software behavioral specifications expressed in 
a subset of VHDLinto efficient machine code capable 
of being executed in a multiprocessor environment. 
The overall approach to software synthesis, shown in 
Figure 15 is to translate behavioral descriptions ex- 
pressed in VHDL into C and then use commercial C 
compilers to translate C into machine code to execute 
on the target processor. In this way, any processor 
with a C compiler can be used as a target. The cur- 
rently supported processors are the Texas Instruments 
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Figure 13: Partitioning with Synthesis in MSS 

TMS430C51, Sun Microsystems SPARC, and Intel 
80386. As explained.previously, the compiled code 
can be statically analyzed for timing performance to 
ensure compliance with timing constraints expressed 
in the VSPEC specification. 

The VHDL subset used as input for software synthe- 
sis is similar to that used for ASIC synthesis [2]. VHDL 

behavioral constructs are fully supported along with a 
limited subset of structural constructs. Explicit tim- 
ing , such as VHDL after clauses or specific time in 
wait statements, is not supported. 

Translation into C is a straightforward process. The 
code generator is encapsulated in template functions 
to allow future extensions to languages other than C. 
For example, the code generator objects can be easily 
changed to output Ada source code strings rather than 
C source code strings. 

The execution environment consists primarily of a 
small multitasking operating system kernel which 
will provide interprocess communication service, task 
management, and input/output support. The task 
scheduler will create, maintain and monitor all tasks 
in the run-time space, while the interprocess commu- 
nication protocol will support a simple message pass- 

Figure 14: Find MCM 

Lib 

Comma.   | 
protocol 

ANSIC 

Figure 15: Software Synthesis Flow in COMET 
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ing mechanism where a process writes its request and 
data in a message channel whenever it tries to com- 
municate with others, and then optionally waits until 
a response is received. The I/O drivers will provide 
a simple stream capability with support for objects of 
arbitrary width. 

7    Test Tools in COMET and MSS 

COMET and MSS contain various tools for the testing 
and simulation of designs as the design process pro- 
gresses. Designs from behavioral level to gate level 
are expressed in VHDL; any VHDL simulator can be 
used to simulate these designs. Test vectors are au- 
tomatically generated at various levels of abstraction. 
These test generation tools take WAVES files as input 
and generate WAVES files as output. As shown in Fig- 
ure 12, at the behavior level, the users write WAVES 

data sets to simulate behavioral descriptions. A mul- 
ticomponent test-bench compiler translates data sets 
into individual WAVES data sets for each of the chips 
in the multichip design. The data set also contains 
expected responses so that automatic comparison be- 
tween expected and actual responses can take place. 
Switch level simulation is facilitated by a switch-level 
test-bench compiler that generates switch-level tests 
from WAVES data sets. 

In addition to the automatically generated tests, users 
can add additional tests to the WAVES data sets. To 
aid users in this process, WAVES usages guide for mul- 
ticomponent designs addressing both WAVES Level 1 
and Level 2 constructs are being developed [7, 8]. 

8    Conclusion 

COMET design environment is under development as 
part of the RASSP program. MSS and DSS systems 
have been operational for over two years; their de- 
velopment has been funded separately by Solid State 
Electronics, Wright Lab and ARPA. COMET tools sig- 
nificantly advance the state of the art in automated 
and vertically integrated synthesis systems. Various 
tools in the COMET cosynthesis system are interfaced 
with other commercial and university tools within 
the RASSP community and produce design and test 
files in standard notations such as VHDL and WAVES. 

Through the use of the VSPEC notation, the COMET 
environment supports design synthesis from abstract, 

declarative specifications of board and MCM level dig- 
ital signal processing architectures. 
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Abstract 

VHDL allows a designer to describe a digital system by specifying a specific design artifact 
.that implements the desired behavior of the system. However, the operational style used by 
VHDL forces the designer to make design decisions too early in the design process. In addition, 
there is no means for specifying non-functional performance constraints such as heat dissipa- 
tion, propagation delay, clock speed, power consumption and layout area in standard VHDL. 
Thus, VHDL is not appropriate for high level requirements representation. VSPEC is a Larch-like 
requirements language used with VHDL that solves these problems. VSPEC adds seven clauses 
to the VHDL entity structure that allow a designer to declaratively describe the data transfor- 
mation a digital system should perform and performance constraints the system must meet. 
The designer axiomatically specifies the transformation by defining predicates over entity ports 
and system state describing input precondition and output postconditions. A constraints sec- 
tion allows the user to specify timing, power, heat, clock speed and layout area constraints. In 
combination with the architecture declaration, collections of VSPEC specified components can 
define a high level architecture as interconnected collections of components where requirements 
of components are known (via a VSPEC description), but implementations are not. This work 
presents the VSPEC language and associated design methodology. 

1    Introduction 

VSPEC is a language for declaratively specifying digital systems. It annotates the hardware descrip- 

tion language VHDL by adding seven new clauses to the entity construct. These clauses allow a 

digital system to be specified using a declarative style as opposed to the operational style of VHDL. 
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With VHDL alone, the only way to specify a digital system is by describing a specific design artifact 

that implements the system's desired behavior. On the other hand, VSPEC allows the designer to 

describe the function of the system without defining the eventual implementation. In short, VSPEC 

allows the specification of "what" a system should do as opposed to the VHDL description of "how" 

the system will do it. This is consistent with Hoare's definition of specifications [9]. 

In addition to allowing the specification of "what" instead of "how", VSPEC addresses another 

limitation of VHDL: specifying performance constraints. When designing a digital system, meeting 

certain non-functional (i.e. performance) constraints is equally as important as creating a system 

that functions properly. A flight control system so slow that it calculates a flight correction after the 

plane crashes is obviously inadequate. Since they are so important in digital systems, performance 

constraints should be specified very early in the design process. However, VHDL does not provide 

a consistent mechanism for specifying these types of constraints. VSPEC addresses this problem 

by allowing the designer to specify performance constraints such as heat dissipation, propogation 

delay, clock speed, power consumption and layout area. 

Another way of viewing VSPEC is as a Larch style interface language for VHDL. The Larch family 

of specification languages supports a two-tiered, model-based approach to specifying programs [7]. 

A Larch specification consists of components written in two languages: an Interface Language 

and the Larch Shared Language. Interface languages are used to specify the interfaces between 

program components, including component inputs and outputs as well as the observable behavior 

of the component. Interface languages exist for a variety of programming languges, including C [6], 

C++ [2], Modula-3 [12] and Ada [5]. 

Definitions written in the Larch Shared Language (LSL) are the second component of a Larch 

specification. LSL is a formal algebraic language that defines the underlying sorts and operators 

used in the Larch Interface Languages [8, 3]. In the VSPEC system, REFINE [17] is the primary 

shared language. REFINE is a language that contains a wide range of constructs, from high-level 
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sets and transformations down to more traditional loops and conditional statements. All VSPEC 

clauses can be translated into a REFINE representation. There are two main reasons REFINE was 

chosen as the primary shared language for VSPEC. 

First, LSL specifications are not executable. Since REFINE is a broad spectrum programming 

language, some VSPEC specifications are executable. This is a very important feature for a digital 

system specification language such as VSPEC. VHDL descriptions of digital system are simulated as 

early as possible in the design cycle so that bugs can be found when they are the least expensive 

to fix. This same concept extends to a VSPEC requirements specification of a system. The sooner a 

bug in the requirements specification is found, the less expensive it is to fix. One way that problems 

with the specification can be found at the earliest possible point in the design cycle is by executing 

the specification. 

The second reason REFINE was chosen as the primary shared language is that it supports synthesis of 

behavioral VHDL from VSPEC. REFINE is one part of a suite of software synthesis tools. Supporting 

synthesis of behavioral VHDL from VSPEC is one of the main long term goals of this research. 

VSPEC is one part of the COMET research project. The goal of this project is to develop better 

techniques for rapid prototyping of digital signal processing systems. A detailed description of 

COMET is beyond the scope of this paper [22], but as the project overview in Figure 1 shows, a 

COMET user begins by writing a description of the function and constraints of the system in VSPEC. 

This description is then used to partition the system into hardware and software components with 

an architecture for connecting these pieces together. Each of these components is synthesized and 

integerated into a board level implementation of the system that is simulated and verified against 

the original specification. 

The remainder of this paper gives a more detailed description of VSPEC. The next section briefly 

describes the VHDL constructs that are important in VSPEC. Section 3 gives a detailed description 

of each of the seven VSPEC clauses. This is followed by an extended example where VSPEC is used to 
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Figure 1: Overview of the COMET project. 

specify a small microprocessor. Following this is a section that describes the formal representation of 

VSPEC. Section 6 discusses other work related to VSPEC and the paper concludes with a description 

of the current status and future directions for this research. 

2    Important VHDL Constructs 

This section gives a very brief description of two of the VHDL constructs used in VSPEC. It contains 

enough information to explain why the VSPEC annotations are needed in a specification language 

for digital systems. For a more complete description of VHDL, refer to the VHDL language reference 

manual [10] or a textbook on VHDL [16]. If you are already familar with VHDL, you can skip this 

section and begin reading about the VSPEC clauses described in Section 3. 

Two of the more important constructs in VHDL are entities and architectures.   A VHDL entity 
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declares a digital component by defining the component's interface. The function of the component 

is not defined in the entity structure. Instead, each entity has one or more associated architectures 

where the function of the component is described. This is the "big picture" of how entities and 

architectures are used. The next few paragraphs give a more detailed description of each of these 

constructs, starting with the syntax for a VHDL entity: 

(entity-declaration) ::= ENTITY (identifier) IS 
(entity-header) 
(entity-declarative.part) 
[ BEGIN 
(entitystatemenLpart) ] 
END [(Entitysimple.name)]; 

The most important portion of the entity declaration is the entity header. The only part of the entity 

header currently used in VSPEC is the port clause. A port clause defines the inputs and outputs of 

the component. Here is an example entity declaration for a simple two input multiplexor: 

ENTITY vhdl_mux IS 
PORT ( DO, Di,   cntrl   :   IN BIT; 

output  :   OUT BIT ); 
END vhdl_mux; 

Notice that this entity merely defines the types of the inputs and outputs to the multiplexor. It 

does not contain any description of the function of the entity. 

The function of the multiplexor is described in the VHDL architecture. Each entity has one or more 

associated architectures. An architecture is used to define the behavior of a specific implementation 

of an entity. The syntax of the architecture construct is as follows: 

(architecture-body) ::= ARCHITECTURE (identifier) OF (Entity.name) IS 
(architecture-declarative-part) 
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BEGIN 
(architecturestatemenLpart) 
END [ {Architecturesimple-name) ]; 

Detailed descriptions of each portion of the architecture are beyond the scope of this document 

(see [10,16]). Suffice it to say that the declarative part of the architecture defines the types, signals 

and components used by the architecture while the statement part defines the behavior or structure 

of the entity. Consider the following architecture for the multiplexor entity above: 

ARCHITECURE behavior OF vhdl_mux IS 
BEGIN 
PROCESS  ( DO, Dl,   cntrl ) 
BEGIN 

IF cntrl = 0 THEN output <= DO; 
ELSE output <= Dl; 

END PROCESS 
END behavior; 

This is an example of a behavioral architecture. Behavioral architectures use ADA-like program- 

ming constructs to define the function of an entity. In this simple example, an if-then statement is 

used to assign a value (<= is used for signal assignment) to the output port based on the value of 

cntrl. Although this is a simple example, behavioral architectures can be quite complex. Auxil- 

iary procedures and functions can be written in the declarative part of the architecture and entire 

packages of library routines can be used within the architecture. With these auxiliary procedures 

and packages, a behavioral architecture can be defined using a large program. No matter what size, 

all behavioral architectures have one thing in common: they define a single implementation of the 

behavior of an entity. 

Structural architectures are the second common type of VHDL architectures. This architecture type 

defines the subcomponents an entity is composed of and how those subcomponents are connected. 

For example, the behavior of the multiplexor could also be defined using and, or and not gates 

connected as shown in Figure 2. In VHDL, this is represented using the following architecture: 
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Figure 2: Structural Implementation of Multiplexor 

ARCHITECTURE structure OF vhdl_mux IS 
COMPONENT and.gate PORT (inl,  in2  :  IN BIT;  output  :  OUT BIT); 
END COMPONENT; 
COMPONENT or_gate PORT  (inl,  in2   :   IN BIT;  output   :   OUT BIT); 
END COMPONENT; 
COMPONENT not_gate PORT  (input   :   IN BIT;   output  :   OUT BIT); 
END COMPONENT; 
SIGNAL DO_set, Dl_set,  cntrl_prime :  BIT; 

BEGIN. 
and_l  :  and.gate PORT MAP (inl=>DO,  in2=>cntrl, output=>DO_set); 
and_2  :  and.gate PORT MAP (inl->Dl,  in2=>cntrl_prime, output=>Dl_set); 
not_l  :  not_gate PORT MAP (input=>cntrl, output=>cntrl_prime); 
or_l  :  or_gate PORT MAP (inl=>DO_set,  in2=>Dl_set, output=>output); 

END structure; 

In this example, the declarative part of the architecture defines three components and three signals. 

The component declarations (and_gate, or_gate and not_gate) define the inputs and outputs of 

three sub-components that will be used in this architecture. The behavior and/or structure of these 

three sub-components must be defined by an entity/architecture pair somewhere else in the system 

(not shown here). Another VHDL construct, the configuration, is used to map components to the 

the entity/architecture pair that define the behavior of the component. The three signals declared 

(D0_set, Dl_set and cntrl_prime) are used to connect these three components together as shown 

in Figure 2. 

Instances of each of the components in the architecture's declarative part are created in the state- 

ment part (between begin and end).  The port map for each instance shows how that particular 
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component instance; is connected to the signals in the architecture. 

Although this example is very small, the same basic concepts denned here scale to much larger sys- 

tems. This multiplexor could be part of an ALU which is a sub-component of a large microprocessor 

which is itself one component on a board level system. The same type of structural architecture is 

used to connect the system together at each of these levels. The lowest level (the and, or and not 

gates in this example) contains a behavioral description of the components. Because VSPEC is an 

extension of VHDL, these features for dealing with large systems are also found in VSPEC. 

3    The VSPEC Clauses 

The VSPEC language annotates VHDL by adding seven new clauses to the entity structure. The 

modified syntax for the entity structure becomes: 

(entity-declaration) ::= ENTITY {identifier) IS 
(entity-header) 
(vspec-dauseJist) 
(entity-declarative-part) 
[ BEGIN ] 
END [(Entitysimple-name)]; 

The only change made to the VHDL syntax was the addition of the optional VSPEC clause list to the 

entity declaration. L All other constructs remain intact. A VSPEC clause list is a list of the seven 

VSPEC clauses separated by commas: 

(vspec-dauseJist) ::= (vspec-dause) { ; (vspec.clause) } ; 

1This statement is not completely accurate since VHDLs expression syntax was also extended to include quantifiers, 
logical implication and support for sets and sequences. This is described in a little bit more detail in the VSPEC 
Language Reference Manual [13]. 
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(vspec-dause) ::= [ (requires.clause) ] | [ (ensures.clause) ] | [ (state.clause) ] | 
[ (constrained-by.clause) ) \ [ (modifies.clause) ] \ [ (based.on.clause) ] j [ (includes.clause) ] 

These VSPEC clauses can be grouped into four broad classes. The first class defines the function 

of the entity and includes the requires and ensures clauses. The next class declares the internal 

state of the entity in the state clause. The third type of VSPEC clause is used to define the 

constraints placed on the system. The constrained by and modifies clauses fall into this category. 

Finally, the includes and based on clauses are used to help map the VSPEC definition to its formal 

representation in REFINE. These are the only two clauses that can appear more than once in a 

VSPEC clause list. The following sub-sections describe each of these clauses in a little bit more 

detail. 

3.1    Requires Clause 

{requires.clause) ::= REQUIRES (logical-expression) ; 

The requires clause states the pre-condition for the entity. If the entity's inputs and current state 

make the requires logical expression true, then the entity is guaranteed to perform its specified 

function. The behavior of the entity is undefined if the requires clause is false. A designer that 

uses an entity specified with VSPEC must ensure that the requires logical expression is true before 

the entity is used. Consider the following example: 

ENTITY search IS 
PORT (input : IN ARRAY OF record.type; 

key : IN INTEGER; 
output : OUT record_type) 

REQUIRES sorted(input); 
ENSURES element_of(output, input) AND output.keyval = key; 
INCLUDES "sort.re", "set.re"; 

END search; 
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In this example, sorted is a function denned in the file "sort.re" (see description of includes clause 

in Section 3.6) that returns true if the array passed in is in order and false otherwise. The search 

entity above will only function properly if the input array is sorted. If the input is not in order, 

the function of search is undefined. The function of all entities is undefined if the requires clause 

is false. For this reason, it is best to keep the pre-conditions expressed in the requires clause as 

simple as possible. The more conditions that must be met for the requires clause to be true (i.e. 

the more complex the pre-condition), the more difficult it will be to meet the pre-condition and use 

the entity. Thus, the pre-condition should be kept as simple as possible. A pre-condition of true 

implies the entity has no pre-condition. It must function properly on all input values. 

One portion of the requires clause definition has been kind of ignored to this point: What is a 

logical expression? All logical expressions in the VSPEC clauses use a syntax that is an extension 

of VHDL. The VHDL expression syntax supports the standard boolean expressions and, or and not. 

VSPEC extends this syntax by adding constructs for variable quantification and logical implication. 

In addition, the VSPEC expression syntax includes constructs for sets and sequences. See the VSPEC 

Language Reference Manual [13] for a more detailed description of the syntax of VSPEC expressions. 

3.2    Ensures Clause 

(ensures.clause) ::= ENSURES {logical-expression) ; 

The ensures clause states the post-condition of the entity. A designer implementing an entity 

specified with VSPEC must ensure that this logical expression is true whenever the entity processes 

valid input (i.e. input that makes the requires logical expression true). Consider the following 

example: 

ENTITY vhdl_mux IS 
PORT ( DO, Dl, cntrl  :  IN BIT; 
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output  :   OUT BIT ); 
REQUIRES true; 
ENSURES output =  (DO AND cntrl) OR (Dl AND (NOT cntrl)); 

END vhdl_mux; 

This is a VSPEC description of the two input multiplexor specified in Section 2. The requires 

clause states that this entity is guaranteed to work for all legal values of the input varaibles. The 

logical expression in the ensures clause declaratively specifies the function of the entity. The logical 

expression is a condition that must be true when the entity functions properly. Thus, the ensures 

logical expression describes the functional requirements of the entity. 

For this simple multiplexor example, the differences between a VHDL behavioral description and 

VSPEC may not seem that significant. For a more telling example, consider the specification of a 

sorting component. In VHDL, the simplest way to speicify a sorter is an entity with a behavioral 

architecture describing its function. This behavioral architecture would be an ADA-like description 

of a specific sorting algorithm such as bubble sort or quicksort. This forces the design of the 

component to a specific implementation at a very early stage in the design process. In reality, this 

behavioral architecture is a description of "how" the sorter should work, not "what" the sorter 

should do. It biases the implementation towards a specific design (i.e. a bubble sort or quicksort) 

and forces a designer to deal with unneccessary detail at a very early point in the design process. 

On the other hand, a sorting component could be described in VSPEC like this: 

ENTITY sorter IS 
PORT ( input : IN ARRAY OF INTEGER; 

output : OUT ARRAY OF INTEGER ); 
REQUIRES true; 
ENSURES permutation(output, input) AND 

sorted(output); 
INCLUDES "sort.re"; 

END sorter; 

In this example, permutation is a function (defined in "sort.re") that returns true if output 

contains all the same elements as input while sorted is the same function used in Section 3.1. 
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This code describes a sorting component as something that ensures input and output contain the 

same elements and that output is in order. Thus, the specification above describes the functional 

requirements of the sorter without describing an implementation of a sorting algorithm. In other 

words, this definition describes "what" the sorter must do instead of defining "how" it should be 

done, VHDL alone does not allow this type of description. The VSPEC ensures and requires clause 

add this feature to VHDL. 

3.3    State Clause 

(state^clause) ::= STATE (vspec.variable-declarationJist) ; 

The purpose of the state clause is to define a list of variables that store the state of an entity. 

In most algebraic specification languages (such as Larch [7]), a computational unit is defined as a 

transformation from inputs to outputs. This type of transformation is not adequate for specifying 

systems with VSPEC. Unlike typical subprograms, an entity's local storage is not re-initialized for 

each use of the entity. Buffers and registers retain their values from one use of the entity to the 

next. The state clause provides a means to model this. The variables declared in the state clause 

serve as the local storage for the entity. In addition, hardware designers very naturally think in 

terms of the state of a device and the state clause allows them to extend this thought process to 

the specification of the digital system. 

The syntax for a VSPEC variable declaration list is: 

(vspecvariable-declarationJist) ::= (vspecjvariable-declaration) {, (vspec-variable.declaration) } 

(vspec.variable-declaration) ::= {identifierJist) : (subtype-indication) 

An identifier list is a comma-separated list of identifiers while a subtype indication is the VHDL 

construct used to declare the type of a variable. In most cases, this is just an identifier that names 
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the type of the variable(s) declared, but refer to the VHDL documentation for a more complete 

description [10, 16]. 

3.4    Constrained By Clause 

(constrained-by-dause) ::= CONSTRAINED BY (logical-expression) ; 

While the ensures clause is used to describe the functional requirements placed on a system, the 

constrained by clause is used to describe the performance requirements of the system. Consider 

the affect of adding the following clause to the sorter example in Section 3.2: 

CONSTRAINED BY 
size <= 2 um * 5 um AND 

, power <= 20 mV AND 
input<->output <= 100 us; 

With this additional clause, the VSPEC entity now supplies information about the area the entity 

must be implemented in, the maximum power consumption of the entity and the pin to pin timing 

for the entity. VHDL does not provide a convenient way to specify these types of performance con- 

straints. The constrained by clause provides a standard method for specifying the non-functional 

requirements of the system. 

The logical expression used in the constrained by clause must be a conjunction of constraint 

expressions. The syntax for these expressions is: 

(constraint-expression) ::= (constraint-type) (relationaLop) (constraint-value) 

where the relational operators are the standard VHDL operators <=, <, >=, >, = and /= (not 

equal) and the constraint value is either a physical literal or a product of two physical literals (i.e. 

10 urn * 40 urn). In VHDL, a physical literal is simply a number followed by a unit (10 mW, for 
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example). Each constraint expression restricts the legal value of the constraint type to a given 

range, for instance power < IV. 

VSPEC currently recognizes five constraint types: area, heat dissipation, power consumption, clock 

frequency and pin to pin timing. In a constraint expression, the first four of these constraint 

types are referenced with an identifier. Respectively, these identifiers are area, heat, power and 

clock_f requency. A slightly different notation is used to specify the final constraint type, pin to 

pin timing. The syntax for this type of constraint is: 

(timing-expression) ::= (input.pin) <-> (output-pin) 

where input pin and output pin are identifiers that represent an input and an output port of the 

entity. Thus, an expression such as input <—> output < 100 us states that a change in the data 

at the input port is propogated to the output port in less than 100 microseconds. 

As mentioned above, constraint values are either a physical literal or the product of two physical 

literals. Area is the only constraint type where a constraint value is the product of two physical 

literals. Area must be specified in this fashion with the two values representing the bounding box 

that the entity must fit into. All other constraint types have values that are physical literals. 

There are several predefined units that are used for constraint values in VSPEC. The base units of 

these predefined units are meters for area, volts for power consumption, hertz for clock frequency 

and seconds for pin to pin timing. In addition to these base units, each of these units can also 

be expressed using the standard metric prefixes (i.e. area could be fm, urn, mm, cm, m or km). 

VHDLalso allows the declaration of virtually any other physical type (see physical type definition in 

a VHDL reference [10, 16]). 

In addition to the five pre-defined constraints, VSPEC users can create their own constraint types. 

At the present time, this has not been implemented in the VSPEC system, but this functionality is 

a part of the overall plan for the language. 
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3.5    Modifies Clause 

(modifies.clause) ::= MODIFIES (identifier-list) ; 

The modifies clause is used to help build a list of signals and variables the entity will modify. The 

entity is guaranteed to change only the signals in this modifies list. The value of all other signals in 

the entity will be left unchanged. Since out mode port signals and all variables in the state clause 

would serve no purpose if the entity did not change them, all out mode port signals and variables 

in the state clause are automatically included in the modifies list. You may explicitly write them 

in the identifier list in the modifies clause if you desire, but this is an unneccessary step. On the 

other hand, global variables 2 and buffer/inout mode port signals may only be modified if they are 

included in the modifies list. It is an error to place in mode port signals in the modifies list since 

the definition of VHDL does not allow an entity to change the value of an input signal. Here is a 

simple example to clarify the signals and variables that will and will not occur in the modifies list: 

ENTITY modifies.example IS 
PORT ( A  :  IN integer; 

B   :  OUT real; 
C, D  : BUFFER bit; 
E, F  :  INOUT bit ); 

STATE G  :  integer; 
MODIFIES C,  E; 

END modifies_example; 

The list of signals/variables this entity will modify is C, E, B and G. C and E are included in this list 

because they are explicitely stated in the modifies clause. B is included because it is an output 

signal. All architectures of an entity must assign a value to all entity output signals. Thus, B 

is automatically included in the modifies list.  G is included in this list for a similar reason. The 

2GIobal variables were added to the 1993 version of VHDL.  Previous definitions of the language did not contain 
global variables. 
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definition of VSPEC forces the entity to assign a value to all state variables so all state variables are 

automatically included in the modifies list. 

3.6    Includes Clause 

(includes-dause) ::= INCLUDES (stringJiteraLlist) ; 

The includes clause is used to include a REFINE program in a VSPEC specification. This REFINE 

program defines the functions and types used in the specification and it helps map the VSPEC 

specification to its formal representation in the REFINE object base. A VSPEC specification may 

contain as many includes clauses as the user needs to describe the system. We have already seen 

an example of the includes clause in the search entity described in Section 3.1: 

ENTITY search IS 
PORT (input  :   IN ARRAY OF INTEGER; 

key  :  IN INTEGER; 
output   :  OUT ARRAY OF INTEGER) 

REQUIRES sorted(input); 
INCLUDES "sort.re",  "set.re"; 

END search; 

In this example, the file "sort.re" contains the following REFINE definition of the sorted function: 

function sorted ( input-seq :  seq(integer) )   : boolean = 
if  (size (input-seq) = i) then 

true 
else 

( input-seq(l) < input-seq(2) ) and sorted (rest(input-seq)) 

This is a boolean function that returns true when the input sequence is in order from smallest to 

largest. In formal logic, a boolean function is called a predicate. VSPEC users can define arbitrarily 

many predicates that are used to describe the observable behaviors of the system being designed. 
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Each of these predicates can appear in the requires or ensures clauses to describe a functional 

requirement of the system. All of the predicates that appear in these clauses must be defined in a 

REFINE file that is listed in one of the includes clauses in the entity where it is used. 

3.7    Based On Clause 

(based-on-dause) ::= (vspecJype) BASED ON {refinesort) 

The based on clause is used to map a data type used in VSPEC to its definition in REFINE. This 

definition in REFINE is called a sort. In the syntax above, vspec type is an identifier that refers to 

the data type used in VSPEC and refine sort is an identifier that represents the corresponding sort 

in REFINE. 

The VSPEC system provides a built in mapping to REFINE for all predefined types in VHDL. This is 

accomplished by automatically including based on clauses for these predefined types in all VSPEC 

entities. The VHDL types integer, real, boolean, character and string map to their corre- 

sponding types in REFINE. The VHDL types severity-level, bit and bit_vector map to the 

following definitions in REFINE: 

type severity_level = {'note,   'warning,   'error,   'failure} 
type bit = {0,  1} 
type bit.vector = seq(bit) 

This means that the VSPEC systems adds based on clauses such as integer BASED ON integer, 

character BASED ON char and bit-vector BASED ON bit.vector to all VSPEC entities. In addi- 

tion, VSPEC automatically includes a REFINE file that contains the three types above. With these 

clauses included in all VSPEC entities, the predefined types in VHDL may be used in any VSPEC 

specification. 
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4    Formal Representation of VSPEC 

All VSPEC definitions can be transformed into a formal definition. This formal definition is based 

on an extension of domain theories defined in the CYPRESS [19] and KIDS [21, 20] systems, CYPRESS 

and KIDS are software synthesis systems that can be used to synthesize an efficient executable 

program from an algebraic specification. A domain theory is used to describe the problem to be 

synthesized. It consists of a tuple of the domain (D), range (R), input pre-condition (I(x : £>)) 

and output post-condition (0(x : D,z : R)) commonly referred to as a DRIO model. In VSPEC, 

the DRIO model can be constructed using the following rules: 

D = d\ x d2 x • • • * dn where each dk is the sort (defined by the based on clause) representing the 

type associated with an in, inout, or buffer port or a state variable 

R = n X T2 x ... x rm where each rj is the sort representing the type associated with an element 

in the modifies list (see Section 3.5) 

I(x : D) = Iv(x : D) where Iv(x : D) is the logical sentence denned by the requires clause 

0(x : D,z : R) = Ov(x : D,z : R) where Ov(x : D,z : R) is the logical sentence defined by the 

ensures clause 

VSPEC is somewhat different from the specification languages that are normally used with CYPRESS 

and KIDS. A specification language for digital systems must provide a means for describing the 

performance constraints of the system. One way to do this would be to include these types of 

constraints in the output post-condition for the system. However, this is not the approach taken 

with VSPEC. Performance constraints have nothing to do with the function of the system so we feel 

it is appropriate to separate them from the functional requirements defined in the post-condition 

of the system (i.e. the ensures clause). 
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This is one reason the constrained by clause is included in VSPEC. The system's performance 

constraints are specified in the constrained by clause while the ensures clause describes the 

functional requirements of the system. The performance constraints can be represented in the 

formal model of VSPEC by extending the DRIO to a DRIOC model: 

C{c\ : C\,..., cn : C„) = Cv(c\ : Ci,..., cn : Cn) where Ck is a constraint variable such as heat or 

area, Ck is a sort associated with a constraint variable and Cv is the logical expression defined 

in the constrained by clause 

The definitions in the DÄ/OCdescribe the system as a transformation mapping the current state 

and inputs into the next state and outputs such that when the input pre-condition is satisfied the 

output post-condition and constraints are also satisfied. Formally, this can written as: 

Vz :£./(*) ^0(x,/(z)) A C(Cl,...,cn) (1) 

where f(x) is the transformation performed by the system. This axiom shows the relationship 

between the design, f(x), and its requirements. In VSPEC, I{x) is derived from the requires 

clause, 0(x,z) from the ensures clause and C(ci,. ..,cn) from the constrained by clause. In 

VSPEC f(x) will be defined using behavioral VHDL. Finding f(x) given J, 0 and C is the synthesis 

problem addressed by COMET. Proving the equation above is true for a given /(x), I, 0 and C 

verifies that f(x) is an implementation of the VSPEC specification. 
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5    Extended Example: 16-bit Move Machine 

5.1    Problem Description 

The Move Machine is a simple microprocessor whose instructions move data between CPU registers 

and main memory [18]. The computational units of the machine are assumed to be memory mapped. 

With this assumption, arithmetic and logical computations are performed as side effects of moving 

data to and from designated memory locations. 

5.1.1 Physical Configuration 

The physical storage components of the Move Machine are a main memory array and a set of 

registers. The registers consist of an instruction pointer, an instruction register, and an array of 

general purpose registers. 

In this example, a 16-bit Move Machine is specified. The configuration used has 16 general purpose 

registers, each 16 bits long. The main memory size is 512 bytes (256 16-bit values), requiring 8-bit 

addressing. The instruction pointer is 8 bits and the instruction register is 16 bits. 

5.1.2 Instruction Format 

The instructions of the 16-bit Move Machine have four fields: 

• A two bit op-code. The four operations that the Move Machine has are: load, store, jump, 

and halt. 

• A two bit addressing mode which determines how the effective address is specified in the 

instruction. The four addressing modes are: absolute, immediate, indirect, relative. 

• A four bit register identification to specify which register is to take part in the operation. 
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• An eight bit effective address which, in conjunction with the addressing mode, determines 

which memory location takes part in the instruction. 

5.1.3    Processor Operation 

The I/O interface to the Move Machine consists of a start signal, a finished signal and a clear signal. 

When the start signal is received, the processing cycle begins. When the machine halts (executes 

a halt instruction), the finished signal is set. The clear signal resets the machine and prepares it 

to receive the start signal. 

The Move Machine has a three phase processing cycle. In the first phase, the instruction referenced 

by the instruction pointer is fetched from memory. In the second phase, the effective address is 

calculated according to the specified addressing mode and the instruction pointer is incremented 

to reference the next instruction. In the third phase, the fetched instruction is executed. 

5,2    Specification of the Move Machine 

The first step in specifying the behavior of the Move Machine is to define abstract data types 

in REFINE. These types and there associated operations will provide the vocabulary necessary 

to describe the behavior of the Move Machine. Once this foundation is laid, defining the VSPEC 

interface specification can begin. First, the input, output, and state variables are specified. Then 

the desired behavior is described using the appropriate VSPEC clauses. 

5.2.1    Abstract Types and Operations 

Abstract data types and operations are specified using the REFINE language. REFINE supports 

a host of set theoretic data types, such as sets, sequences, tuples, and maps. Sets and sequences 

represent unordered and ordered collections of objects, respectively. Tuples are an ordered collection 
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of related data, similar to a VHDL record. Maps represent a functional relation between two types. 

Formally, they are a set of 2-tuples such that M(x) = y means that (x,y) € M. Some additional 

REFINE constructs will be introduced as they are used in the example. REFINE has a complete 

array of operations for the predefined data types. For a more complete explanation of REFINE 

types and operations, see the REFINE User's Manual  [17]. 

Figure 3 shows the REFINE specification of the Move Machine data types and operations. The 

first section in Figure 3 shows the predefined VHDL types available for use within the REFINE 

specification. These are shown for reference, to make the example self-contained. The predefined 

VHDL types are shown in all caps whenever they are used. The next section in Figure 3 is a group 

of constant declarations that define the hardware configuration of the Move Machine. 

The next group of declarations are the abstract data types. First, the Word type is introduced as 

a set of BIT-VECTOR. Next, the Address type is defined as an integer subrange. Variables of type 

Address will have an integer value between 0 and MM_Size-l. The type Memory .Array is defined as 

a map from Addresses to Words. This means that for a Memory_Array, M, and an Address, x, the 

Word at memory location x is simply M (x). Notice that the size of a Memory-Array is restricted 

by the upper bound of the Address integer range. Register-Array and Register_Id are specified 

in the same manner as Memory-Array and Address. 

The abstract type Operation is defined to describe the four possible Move Machine operations. 

This is done using a symbol. Symbols are a REFINE type used to represent an abstract value. They 

are not strings or sequences of characters. Each symbol literal is a unique atomic value. The Move 

Machine's four addressing modes are similarly represented by the Add_Mode type. 

The Instruction type is a 4-tuple representing the four fields of the instruction. The tuple values 

are accessed in the same manner as fields of a record. The op.code value for an Instruction, i, 

is simply i.op_code. 

The last data type specified is Proc_State. This type is used to represent the abstract states of the 
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'/,— REFINE move_mc_types.re — abstract type lor the Move Machine. 
*/, The following lines are needed in all Refine programs 
!!  in-package("RU") 
!!  in-grammar('user) 

'/, predefined VHDL types and operations 
'/, type BIT = boolean 
*/. type BIT.VECTOR = seq(BIT) 
'/. function bits_to_int(b:BIT_VECTOR)  :  INTEGER 

'/. Move Machine constant declarations 
constant MM_Size :  INTEGER = 256 
constant Register_Array_Size :  INTEGER = 16 
constant Word_Size: INTEGER = 16 

'/, Move Machine type declarations 

type Word = BIT_VECTOR 
type Address = {0. .MM_Size-l} '/. integer range 
type Memory_Array = map(Address.Word) 
type Registered = {0. .Register_Array_Size-l}   */. integer range 
type Register_Array = map(Register_Id,Word) 
type Operation = SYMBOL 
type Add.Mode = SYMBOL 
type Instruction = 

tuple(op_code :  Operation, addr_mode : Add_Mode, 
reg_id  :   Register_Id,  eff_addr  :  Address) 

type Proc_State = SYMBOL 

V, Operations over the Move Machine types 
function Word_to_Instr(data :  Word)   :   Instruction = 

< Decode_Op(subseq(data,0,l)), 
Decode_AM(subseq(data,2,3)), 
bits_to_int(subseq(data,4,7)), 
bits_to_int(subseq(data,8,15)) > 

function Decode_Op(data :  seq(BIT))   :  Operation 
computed-using   data =  [false,false] => Decode_Op(data) =  'load, 

data =  [false,true] => Decode_Op(data) =  'store, 
data =  [true,false] => Decode_0p(data) =  'jump, 
data =  [true,true] => Decode_0p(data) =  'halt 

function Decode_AM(data :  seq(BIT))   :  Add_Mode 
computed-using    data =   [false,false]  => Decode_AM(data) =   'absolute, 

data =  [false,true] => Decode_AM(data) =  'immediate, 
data =  [true,false] => Decode_AM(data) =  'indirect, 
data =  [true,true] => Decode_AM(data) =  'relative 

Figure 3: Move Machine data types and operations. 
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Move Machine's operation. The three processing phases, fetch, decode, and execute, are represented 

along with start and stop states. The allowable actions of the Move Machine's behavior will be 

expressed as transitions between these five processor states. 

The last section in Figure 3 is the specification of Word_to_Instr, an operation that converts 

between Words and Instructions. This conversion will be necessary because instructions are 

stored in memory as words. Notice that syntax of REFINE permits simply equating the function 

with a tuple construct. The values of each of the tuple fields are themselves function calls. The 

REFINE subseq operation is used to extract a smaller sequence from an existing sequence. This 

operation can be used with the type Word, because it is a BIT-VECTOR which is a sequence of BITS. 

The functions Decode_0p and Decode_AM are used to precisely define the operation and addressing 

mode deciding scheme. 

5.2.2    VSPEC Interface Specification 

This section contains a detailed description of the interface specification for the Move Machine. 

The entire specification is shown in Figure 4. We will describe each section of this specification 

separately, starting with the port declaration. This is where the entity movejnc is created and its 

I/O ports are declared in standard VHDL syntax. The start and clear signals are denned as inputs 

and the finished signal is defined as an output. The Move Machine port declaration is: 

entity move.mc is 
port  (Start:  in BIT; — Begin processing 

Clear:  in BIT; — Restart processing 
Finished:  out BIT); ~ Processing completed 

The VSPEC includes clause follows the port declaration: 

includes "move_mc_types.re"; 
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«ntity Bove_mc is 

port (Start: in BIT; 

Clear: in BIT; 

Finished: out BIT); 

Begin processing 

Restart processing 

Processing completed 

includes "aove_mc_types.re"; 

state 

phase: Proc_State, 

Memory : Menory_Array, 

IP : Address, 

IR : Instruction, 

BGST : Register.Array, 

EA : Address, 

Abstract Processor State 

Main Memory 

Instruction Pointer 

Instruction Register 

General Purpose Registers 

Effective Address 

ensures 

phase = start implies (Start = '1' implies phase'post = fetch) 

and (Start = '0' implies phase'post = start) 

and IP'post = 0 

and Memory'post = Memory and RGST'post = RGST 

and 
phase - fetch implies IR'post = Word_to_Instr(Memory(IP)) 

and phase'post = decode and Memory'post = Memory 

and RGST'post = RGST and IP'post = IP 

and 
phase = decode implies phase'post = execute 

and (IR.addrjnode = absolute implies 

EA'post =» IR.eff.addr and IP'post = IP + i) 

and (IR.addr.mode = immediate implies 

EA'post = IP + 1 and IP'post = IP + 2) 
and (IR.addr_mode ■» indirect implies 

EA'post = Word_to_Instr(Meaory(IR.eff_addr)).eff_addr 

and IP'post => IP + 1) 

and (IR.addr_mode = relative implies 

EA'post = IP + IR.eff_addr and IP'post = IP + 1) 
and Memory'post =■ Memory and RGST'post = RGST and IR'post = IR 

and 

phase = execute implies 

(IR.operation = load implies RGST(IR.reg_id)'post = Memory(EA) 

and forall(x:Register_Id) 

(x /= IR.reg_id implies RGST(x)'post = RGST(x)) 

and (IR.operation /» load implies RGST'post = RGST) 

and (IR.operation = store implies Memory(EA)'post = RGST(IR.reg_id)) 

and foralKx:Address)(x /= EA implies Memory(x)'post = Memory(x)) 

and (IR.operation /= store implies Memory'post = Memory) 

and (IR.operation = jump implies IP'post = EA) 

and (IR.operation /= jump implies IP'post = IP) 

and (IR.operation ■ halt implies phase'post = stop) 
and (IR.operation /= halt implies phase'post = fetch)) 

and 
phase » stop implies Finished'post = '1' 

and (Clear - '0' implies phase'post = stop) 

and (Clear = '1' implies phase'post = start) 
and Memory'post =■ Memory and RGST'post = RGST 

and 

phase /= stop implies Finished'post = '0'; 

end move.mc; 

Figure 4: VSPEC interface specification for the Move Machine 
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The includes clause states that this specification will use abstract types and operations defined 

in the file move_mc.types.ra, which was described in the previous section. 

The behavior of the Move Machine is specified by describing the allowable transactions between 

processor states [14]. To do this, we must first definine the information that determines the processor 

state. The Move Machine has a three phase processing cycle which can be viewed as processor states. 

The addition of a start and a stop state defines a set of states which uniquely describes the status of 

the Move Machine at any moment in time. The abstract type Proc_State was defined specifically 

for this purpose. Therefore, the state clause contains the variable phase of type Proc_State to 

model the processor state: 

state 
phase: Proc_State, — Abstract Processor State 
Memory : Memory_Array, — Main Memory 
IP  :  Address, — Instruction Pointer 
IR :  Instruction, — Instruction Register 
RGST  : Register.Array, — General Purpose Registers 
EA  : Address, — Effective Address 

Naturally, the values of the registers and main memory are of interest when observing the behavior 

of the processor. Variables of these type are declared in the state clause to model these physical 

structures. In addition, any internal signals that are used to communicate between processor states 

must be declared as state variables. The effective address is calculated in the decode phase but it 

is used in the execute phase. Therefore, the variable EA of type Address is declared to store the 

effective address between states. 

Given a set of input and state variables, the VSPEC ensures clause can be used to specifiy the 

allowable changes to the output and state variables. In this way, the behavior of the Move Machine 

is defined. The Move Machine ensures clause is structured according to the value of the phase 

variable. This clarifies the specification of the state transactions that are allowed during each phase 
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of processor execution. The allowable transactions for each phase are then conjuncted together to 

provide a complete behavioral specification. 

The permissible next state values must be explicitly constrained for each state variable. If a state 

variable is not constrained, then presumably it is allowed to take on any value of the associated 

type. It is not assumed that unconstrained variables remain unchanged. Constraining a variable's 

behavior is accomplished using the VSPEC implies operator to define the next state values that 

are possible during each processor phase. In this example, the next state values are determinant, 

but this is not a necessary condition. Non-determinism can be modeled by disjuncting allowable 

next state values. 

The first part of the ensures clause specifies what transactions are allowed during the start phase. 

While in the start phase, the processor is simply waiting for the start signal to begin processing. If 

the processor does not receive the start signal, it stays in the start phase. This constraint on the 

next state value of the phase variable (phase'post) is specified by the first two conjuncts implied 

by the start phase. Note that the notation <uan'aWe>'post, where <variable> is the identfier for 

the variable, is used to refer to the value of the variable after the transaction occurs. Here is the 

part of the ensures clause which describes the start phase: 

phase = start implies (Start =  '1'  implies phase'post = fetch) 
and (Start =  '0'   implies phase'post = start) 
and IP'post = 0 
and Memory'post = Memory and RGST'post = RGST 

The conjunct, IP 'post = 0, states that the first instruction will be retrieved from memory location 

0. The final two conjuncts specify that the main memory and register values must remain unchanged 

during this processing phase. Without these constraints, the specification would be satisfied by an 

implementation where the memory and registers values arbitrarily change during this state, which 

is not the desired behavior. Notice that the state variable EA is not constrained during this phase. 
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At this point, the EA variable does not contain any information which will effect the future state 

of the machine. Therefore, the specification need not be constrained to retain the value of this 

variable. 

The Move Machine behavior during the fetch phase is described by: 

phase = fetch implies IR'post = Word_to_Instr(Memory(IP)) 
and phase'post = decode and Memory'post = Memory 
and RGST'post = RGST and IP'post = IP 

During the fetch phase, the instruction pointer is updated to ontain the interpretation of the word at 

memory location IP. Here, the interpretation is performed by the Word_to_Instruction function 

defined in the previous section. The next processing phase is specified to be decode, while the 

memory and remaining register values remain unchanged. 

The state changes which occur during the decode phase hinge on the addressing mode. Therefore, 

the majority of the specification of the decode phase is structured around the value of IR. addr_mode: 

phase = decode implies phase'post = execute 
and (IR.addr.mode = absolute implies 

EA'post = IR.eff.addr and IP'post = IP + 1) 
and (IR.addr_mode = immediate implies 

EA'post = IP + 1 and IP'post = IP + 2) 
and (IR.addr_mode = indirect implies 

EA'post = Word_to_Instr(Memory(IR.eff_addr)).eff.addr 
and IP'post = IP + i) 

and (IR.addr.mode = relative implies 
EA'post = IP + IR.eff.addr and IP'post = IP + 1) 

and Memory'post = Memory and RGST'post = RGST and IR'post = IR 

The effective address, EA and instruction pointer, IP, are updated according to the current ad- 

dressing mode. The next phase is specified to be the execute phase. The main memory, the CPU 

registers and the instruction register are unchanged. 
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The Move Machine behavior during the execution phase depends upon the fetched operation. This 

part of the specification is determined by the Move Machine operations: 

phase = execute implies 
(IR.operation = load implies RGST(IR.reg_id)'post = Memory(EA) 

and foralKx: Registered) 
(x /= IR.reg.id implies RGST(x)'post = RGST(x)) 

and (IR.operation /= load implies RGST'post = RGST) 
and (IR.operation = store implies Memory(EA)'post = RGST(IR.reg_id)) 

and forall(x:Address)(x /= EA implies Memory(x)'post = Memory(x)) 
and (IR.operation /= store implies Memory'post = Memory) 
and (IR.operation = jump implies IP'post = EA) 
and (IR.operation /= jump implies IP'post = IP) 
and (IR.operation = halt implies phase'post = stop) 
and (IR.operation /= halt implies phase'post = fetch)) 

For a load operation, the register identified by the current instruction is assigned the value of the 

memory location referenced by the effective address. This is easily specified by: RGST(IR.reg-id) 'post 

= Memory (EA). However, it is also necessary to specify that the remaining registers do not change. 

This is the purpose of the second conjunct implied by the load operation. Using the VSPEC f orall 

construct, it states that every register that is not involved in the load operation retains its value. 

When the instruction does not specify a load operation, the values of the register array do not 

change. 

Similarly, for a store operation, the specification states that the specified memory location changes 

while the rest remain unchanged. The jump operation only effects the value of the instruction 

pointer. A halt operation causes the next phase to be the stop phase. Any other operation results 

in the processing returning to the fetch phase. 

During the stop phase, the processor sets the finished signal and monitors the clear signal. The 

stop phase is specified by: 
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phase = stop implies Finished'post = '1' 
and (Clear = '0'  implies phase'post = stop) 
and (Clear = '1'  implies phase'post = start) 
and Memory'post = Memory and RGST'post = RGST 

and 
phase /= stop implies Finished'post = '0'; 

The next phase is determined by the clear signal. This part of the specification also constrains the 

finished signal to be low during every other phase. 

The full behavior of the Move Machine is modeled by conjuncting the specifications for the indi- 

vidual phases. Figure 4 shows the entire specification for the Move Machine. 

6    Related Work 

VSPEC uses an axiomatic specification technique based on the approach developed for the Larch [7] 

family of specification langauges. On the surface, VSPEC is a prototype Larch interface language 

for VHDL. Thus, many of its constructs can also be found in other Larch interface languages, most 

specifically LM3 [12], an interface language for Modula-3. Currently, VSPEC is not a true interface 

language as its semantics are defined using REFINE rather than the Larch Shared Language (LSL). 

However, the general concept of a language specific axiomatic interface language in combination 

with a means for writing auxiliary specification is prominent. 

Odyssey Research Associates (ORA) is developing a Larch interface language for VHDL [11]. This 

language differs from VSPEC because it is targeted for formal analysis of the system rather than 

for synthesis. ORA. is attempting to generate a formal semantics for VHDL using LSL for prov- 

ing correctness. This approach is adopted from the Ada work previously done in the Penelope 

project [4]. In ORA's interface language, time is the only non-functional constraint directly rep- 

resented. Rather than placing constraints on pin-to-pin timing, an absolute time based termporal 

logic is used to specify the an entity's function. One can specify that a predicate P(x) must be true 
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at time t using the notation "P(x)@t". Thus, a system's timing constraints are intermingled in the 

definition of the function of the system. The VSPEC notation specifies time intervals as constraints 

independent of system function. In principle, separation of concerns is a design goal for any spec- 

ification language. In practice, including temporal aspects in the functional specification requires 

use of theorem provers capable of temporal reasoning. Currently, there are few such production 

quality provers. In VSPEC, information needed for constraint verification is included, but one may 

choose characteristics for verification. 

VAL [1] is another attempt to annotate VHDL. VAL (VHDL Annotation Language is based on 

similar work done with Anna for Ada programs [15]. VAL differs from VSPEC because it is an 

annotation of a specific VHDL design rather than a representation of the requirements for a system 

not yet designed. VSPEC clauses may access only ports defined by the entity and variables 

defined locally in the specification. VAL annotations exist throughout the VHDL specification 

and formally document its behavior. Any local variable may be referenced in a VAL annotation. 

Specific aspects of both the structural and behavioral implementation are documented in the VAL 

annotation. VAL's intent is to document a design for verification where VSPEC'S intent is to define 

requirements for a system. 

7    Current Status and Future Directions 

Current VSPEC research involves pursuing domain specific support for prototype synthesis. The 

role of VSPEC in the COMET system is as a requirements specification language and as input to 

synthesis tools. Thus, we are working to develop techniques to transform VSPEC into behavioral 

and structural VHDL. An important related technology transfer issue is developing a handbook of 

reusable specifications. In the Larch tradition, a handbook is simply a collection of reusable theories 

defined in the shared language. Handbook theories represent commonly used structures, algorithms 

and characteristics as well as domain specific information. For VHDL theories representing standard 
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VHDL types, low level logic functions, signal attributes and conversion routines are some libraries 

currently being implemented. Theories for pin-to-pin timing, heat dissipation, power consumption, 

area and clock speed have been implemented to support constraint checking during the design 

process. 

We are beginning an effort to make VSPEC a true Larch interface language. Specifically, denning each 

of its constructs using LSL and developing tools for manipulating the specifications. Of particular 

interest is the representation of parallel components. Each entity structure exists asynchronously 

in parallel with other entities in the same design, representing such parallelism in VSPEC is a 

current area of research. 

A prototype VSPEC parser has been developed and will be used to drive synthesis tools and the 

translation from VSPEC to LSL. The parser is developed using the SOFTWARE REFINERY'S DIALECT 

tool and parses VHDL93 with VSPEC extensions into an abstract syntax tree. This data structure 

serves as the basis for interfacing VSPEC with other tools. 
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Abstract 
This paper discusses a scheduling technique for 

pipelined hardware-software codesigns. The technique 
uses scheduling and retiming to optimize the perfor- 
mance of a given codesign. The paper presents heuris- 
tics for scheduling and retiming which aim to optimize 
the throughput and memory requirements of a given 
codesign. The effectiveness of the technique is demon- 
strated by experimentation. 

1    Introduction 
Hardware-Software codesigns are characterized by 

strict performance constraints. The codesign process 
partitions the system specification in to interacting 
hardware (HW) and software (SW) tasks which ex- 
hibit the desired behavior and satisfy the performance 
requirements. In a typical codesign flow the HW-SW 
partitioner and the scheduler execute in an iterative 
fashion till a constraint satisfying design is obtained. 
Many digital signal processing (DSP) algorithms are 
loop oriented, which makes them suitable for pipelined 
codesign implementation. In this paper we present a 
technique which optimizes the throughput and mem- 
ory requirements of pipelined codesigns by scheduling 
and retiming. 

The system specification is captured in an interme- 
diate graph format called the Data Dependency Graph 
(DDG). The vertices of the graph represent the tasks 
and the edges represent the data dependencies among 
the various tasks. The granularity of the tasks is deter- 
mined by the user. The execution times of the tasks on 
the SW processor and in HW are obtained by profiling 
and HW performance estimation respectively [5]; and 
are stored in the graph representation. The edges con- 

"This work was partially supported by the ARPA RASSP 
program and monitored by the Wright Lab, US-AF under con- 
tract number F33615-93-C-1316 and ARPA HPCC program 
monitored by the FBI under contract number J-FDI-93-116 

tain information about the number of variables across 
a dependence. The DDG representation will be dis- 
cussed in detail in Section 3. 

The codesign architecture consists of a single gen- 
eral purpose SW processor, a single application spe- 
cific integrated chip (ASIC) and a shared memory 
(Figure 1). The SW processor and ASIC are connected 
to the shared memory through the system bus. The 
general purpose processor and the ASIC themselves 
are non-pipelined with respect to task execution, that 
is a new task cannot begin execution before the pre- 
vious one has finished. Communication between tasks 
bound to different resources (that is from SW to HW 
or HW to SW) takes place through the shared mem- 
ory. Also data transfers between two tasks bound to 
ASIC takes place through the shared memory. The 
shared memory is exclusive read exclusive write and 
therefore no two tasks can either read or write at the 
same time. 

FOR SW - SW 
COMMUNICATION 

SHARED 
MEMORY 

/ § SYSTEM B I 
GENERAL 
PURPOSE 

MICRO 
PROCESSOR 

s t 
ASIC SOFTWARE 

MEMORY 
..*,.,„ i^ntiWI."" 
~«i.*.:- .^*^«...^ ,~.,r* 

Figure 1: Codesign Architecture 

The throughput of loop-oriented codesigns can be 
maximized by obtaining a pipelined implementation. 
The drawback of pipelining is that it increases the 
memory requirement of the design. Consider the DDG 
shown in Figure 2. It consists of three tasks shown 
as bubbles in the figure. The binding and execution 
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Figure 2: DDG Example 
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times of the tasks axe shown beside each bubble. The 
data dependencies are shown as directed edges and the 
data items transferred by each dependency are writ- 
ten next to the edges. The memory read and write 
times are also shown in the figure. We assume that 
the DDG is executed a number of times inside a loop. 
The non-pipeline and pipeline implementations of the 
design are shown in Figure 3. The rectangles in Figure 
3 represent the execution of various tasks. Each rect- 
angle contains the task number and iteration number 
of the loop to which it belongs. The small rectangles 
with "r" and "w" represent memory read and write 
respectively. We assume that a task while executing 
needs memory space for both its read set and write 
set. The read (write) set of a task is the set of data 
items read (written) by the task. As can be seen from 
the figure the non-pipeline implementation takes 374 
t-units to complete one iteration of the loop and it re- 
quires 12 memory units. The pipeline implementation 
overlaps the execution of tasks belonging to different 
iterations of the loop. When fully loaded the steady 
state completes one iteration in 269 t-units, a definite 
improvement on the previous design. But it requires 
17 memory units for its execution. 

The paper presents a technique for optimizing the 
performance of pipelined codesign. The technique uses 
a list based scheduler [1] and retiming transformations 
[2] to obtain a pipelined codesign. The paper presents 
heuristics for both scheduling and retiming which try 
to maximize the throughput of the design while trying 
to minimize the memory requirements. 

The paper is organized as follows. In Section 2 we 
discuss previous work, in Section 3 we describe the 
DDG representation, Section 4 presents the pipeline 
scheduling technique, the experimental results are in 
Section 5 and finally Section 6 concludes the paper. 

Figure 3: Non-pipeline and Pipeline Implementation 

2 Previous Work 
Based on their application area existing codesign 

methodologies can be broadly classified in to two cate- 
gories. Category one would include methodologies ori- 
ented towards real time reactive systems [7] [8] [11] [13]. 
Scheduling in reactive systems is done to ensure that 
time constraints and data dependencies between dif- 
ferent processes are satisfied [12]. Category two would 
contain methodologies that are meant for data pro- 
cessing applications [10]. Design methodologies for 
such applications use scheduling to maximize the 
throughput of a given codesign partition. Our code- 
sign flow would fall into category two. In this paper we 
present a scheduling heuristic for optimizing through- 
put and memory requirements of a design. Pipelining 
is an effective way for maximizing the throughput of 
a loop oriented design. Other research [9] has used 
pipelining for mixed applications which include both 
control constructs and data processing tasks. We use 
retiming [2] to generate pipeline designs. The for- 
malism for the problem description and the general 
technique is described in [3] and we use the same in 
our paper. Retiming heuristics in [3] aim at obtaining 
pipelined implementations with optimum throughput. 
In this paper we present a scheduler interacting with 
a retimer to optimize both throughput and memory 
requirements of pipelined codesign applications. 

3 Data Dependency Graph 
The input specification is captured by an intermedi- 

ate graph called the Data Dependency Graph (DDG). 
It represents the tasks by vertices and the data de- 
pendencies between tasks by directed edges. The ver- 
tices have information about the task binding (HW or 
SW), HW execution time and SW execution time. The 
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edges have information about the number of variables 
in a dependence. Since we are interested in pipelining 
the design, we associate with each vertex an iteration 
index (A) and with each edge a dependency distance 
(<5) [3]. The iteration index X(u), of a task u indicates 
that at the ith iteration of the steady state, instance 
of task u belonging to the (i + X(u)) iteration of the 
loop is executed. For example consider the pipelined 
design in Figure 3. In the first iteration of the steady 
state, instance of task 1 belonging to the second itera- 
tion of the loop is executed, hence X(taskl) = 1. The 
dependence distance of an edge e, 6(e) indicates the 
number of iterations of the steady state traversed by 
that edge. In the pipelined implementation in Figure 
3, the data produced by task 1 at the ith iteration of 
the steady state is consumed by task 2 at the (i + l)th 

iteration of the steady state. Hence the dependence 
distance of edge (1,2) is 6(1,2) = 1. We now formalize 
the DDG representation as follows: 
A DDG is a 4-tuple DDG = G(V,E,X,8), where: 

• V is the set of vertices. Each vertex u € V rep- 
resents a task. For each task u € V we have the 
following information available to us : 

- Ubind '■ The binding of the task, that is 
whether its going to be implemented in HW 
orSW. 

- usw : The SW runtime of the task for a 
particular input data on the general purpose 
processor. 

- Uhw ■ The HW runtime of the task if it were 
to be implemented as an ASIC for the same 
input data. 

• E is the set of directed edges. Each e = (u, v) £ E 
represents a data dependence between tasks u and 
v. Every edge has information about the number 
of variables (evar) represented by the dependence. 

• A and 5 are two mappings, A : V -»• IV and 
6 : E -> IV, representing the iteration index (X) 
and the number of iterations traversed by the de- 
pendence (S). IN is the set of natural numbers. 

Initially, Vu € V, X(u) = 0. Notice that the repre- 
sentation has no control flow constructs; it is strictly 
data flow. Now we explain and formalize terms and 
expressions that we will use in the rest of the paper. 

The latency of a task u, Lu, is the total execution 
time of the task. It is the sum of the task's read time, 
execution time on the particular resource that its been 
bound to and write time. The read (write) time of a 
task is the product of the number of variables read 

(written) by the task and the memory read (write) 
time. Since we have only two resources, the execution 
time for a task on a resource is usw (if uund = sw) or 
Uhw (if Ubind = hw). 

For a particular pipeline implementation, the ini- 
tiation interval II, is the time taken for one itera- 
tion of the steady state. For example in Figure 3, 
the pipelined implementation has II = 269 t-units. 
Given a DDG and an architecture its possible to es- 
tablish a lower bound on the initiation interval. This 
is called the minimum initiation interval, MIL The 
MI7 is limited by two factors. Firstly the archi- 
tecture resources limit the MIL This is called the 
resource constrained Mil, ResMII. For example 
the DDG in Figure 2 requires at least 212 t-units 
to execute tasks 1 and 3 which are bound to SW. 
The SW resource constrained Mil, ResMIIsw is 
given by the sum of latencies of all tasks bound to 
SW implementation. Similarly, HW resource con- 
strained Mil, ResMIIffw is the sum of latencies of 
all tasks bound to HW implementation. ResMII for 
the DDG is then the maximum of the two, that is 
ResMII = max(ResMIIsw,ResMIlHw) Secondly, 
recurrences or cycles in the DDG also limit MIL This 
is called the recurrence constrained Mil, RecMII. 
For example consider the DDG example shown in Fig- 
ure 2. Let us assume that we add an extra dependency 
e = (2,1) with 6(2,1) = 1 to the DDG. In such a case 
the pipelined implementation in Figure 3 becomes in- 
valid. This is because the instance of task 1 belonging 
to the second iteration cannot start executing before 
the the instance of task 2 belonging to the first itera- 
tion of the loop. This constraint is introduced because 
of the recurrence present in the DDG. The RecMIIr 

for a recurrence r, is given by the ratio of the sum 
of the latencies of the tasks in the recurrence to the 
sum of the weights (6) of all the dependencies in a re- 
currence. A graph may have more than one cycle, and 
RecMII is then the maximum of the RecMIIr due to 
each one of them, that is RecMII = max(RecMIIr), 
for all the recurrences r in the DDG. The Mil is 
then the maximum of ResMII and RecMII, that 
is Mil = max(ResMII,RecMII). The maximum 
execution throughput of a DDG, MaxTh is the max- 
imum iterations of the steady state possible in one 
time unit. Its given by: 

i 
MaxTh = 

Mil 

4    Pipeline Scheduling Technique 
The objective of the technique is to  obtain a 

pipeline schedule of the the DDG which has Mil as 
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its initiation interval and which requires least amount 
of shared memory. The pipeline schedule of the DDG 
determines the steady state of the pipeline. The flow 
diagram of the technique is shown in Figure 4. The 
inputs to the pipeline scheduler are the partitioned 
DDG, the codesign architecture and a desired upper 
bound on initiation interval, MaxII. The pipeline 
scheduler first calculates the Mil for the design. It 
then tries to schedule the DDG in Mil time. If its 
unsuccessful it selects a dependency to be retimed. 
Retiming as we will see later transforms a schedule 
constraining dependency into a free scheduling depen- 
dency which does not constrain the scheduler. In this 
process however, it increases the iteration indices of 
some tasks. Hence retiming produces a DDG with 
tasks belonging to different iterations of the steady 
state. In other words retiming produces a pipelined . 
DDG. This inner loop of scheduling and retiming 
continues till a successful schedule is found or all the 
dependencies have been retimed. In the latter case 
we increase the initiation interval and try scheduling 
again. We set the increment factor to the maximum 
of the following two values: one time unit or one per- 
cent of MIL We exit the outer loop when the initia- 
tion interval II becomes greater than the user specified 
MaxII. 

The inputs to the scheduler are the DDG and the 
expected initiation interval II. The objective of the 
scheduler is to obtain a pipeline schedule of the DDG 
in II time using the least amount of shared memory. 
The schedule is an assignment of start times to tasks, 
S{u), such that for all tasks u in the graph 0 < S(u) < 
II [3]. For a dependency e = (u,v), the schedule 
time of u and v must honor the data dependence, ie 
S(v) + 6{u, v)xll> S(xi) + Lu =>S(v)> S(u) + LU- 
S(u,v) x II. Also there should be enough resources 
and shared memory to execute a task scheduled at a 
particular time instance. The memory requirement of 
a task during execution is the total memory required 
by the variables in the task's read set and write set. 
The pipeline schedule of a task is then formalized as 
below: 

For a given II, a pipeline schedule of DDG = 
G(V, E, X, S) is an integer labeling, S -»■ N which ful- 
fills the following conditions : 

• Vu 6 V, 0 < S{u) < II. 

• V(u,ü) S E,S{v) > S{u) + L„ - II ■ 6(u,v), that 
is all dependences must be honored. 

• There are sufficient resources (HW and SW) to 
execute the task scheduled at a particular time in- 
stant. 

PIPELINE SCHEDULER 
Calculate Mil 

Set 11 = Mil 

Schedule DOG 
In II Time 

II > MaxII 

Yes 

Unable to Schedule Output Succesful 
In less than Max« Time        Schedule, Throughput 

Rate and Memory 
Requirements 

Figure 4: Pipeline Scheduling Technique 

• There is sufficient memory to execute the task 
scheduled at a particular time instant. 

Schedule   Constraining   Dependencies.    For  a 
given initiation interval II, the data dependencies 
in a DDG can be classified in to positive scheduling 
dependencies (PSDs), negative scheduling dependen- 
cies (NSDs) or free scheduling dependencies (FSDs) 
[3]. A dependency (u,v) is a PSD if Lu - II ■ 
6(u,v) > 0. A dependency is a FSD or NSD if 
LU-II- 5{u, v) < 0. PSDs constrain scheduling since 
they make S(v) > S(u), in other words task v must 
be scheduled later than task u. FSDs do not con- 
strain scheduling. NSDs could constrain a schedule 
if pipelined resources are used or if an iteration of the 
steady state begins before the previous one finishes 
(non-rectangular schedule). Since neither of the two 
conditions are true in our case, NSDs do not con- 
strain the schedule. The set of schedule constraining 
dependencies Es is then given by: 

Es = {{u, v) e E\LU - II ■ 6(u, v) > 0} 
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PSDs are also called intra loop dependencies (or 
ILDs) and FSDs and NSDs are together called as 
loop carried dependencies (or LCDs). A dependency 
(u, v) is a iXjD if S(u,v) = 0 and it is a LCI? if 
6(u, v) > 0. 

Given a set of schedule dependencies we can define 
two properties for every task. The first one called the 
height of the task, H(u) gives the as soon as possible 
(ASAP) schedule time of a task. The second one called 
the depth of a task, D(u) is a measure of the "urgency" 
of the task to be scheduled. It is given by: 

_, . _ J Lu, if there doesn't exist a {u,v) e Es 

\ maxeS£s {D(v) + Lu - II ■ 6~{e)), otherwise 

where e = (u,v). For an initiation interval II, 
(II-D(u)) gives the as late as possible (ALAP) sched- 
ule time of the task. Both these quantities can be 
calculated by a breadth first search of the DDG. 

A path p = {ei,...,e„} is called a positive path, if 
Ve 6 p, e is a PSD. The Length of p is: 

Length(p) = Lw +   ^  (Lu - II • 5(u,v)), 

(u.«0ep 

where Lw is the latency of the tail task in the positive 
path. For a task that is the head node of a positive 
path the above expression gives the depth of the task. 
A maximal positive path, MPP of a DDG, is a positive 
path p such that, for any other positive path p' C E, 
Lengthip) > Length{p'). The MPP for a DDG is 
then given by: 

MPP = max(D{u)),VueV 

For a feasible schedule of a DDG with initiation in- 
terval II, 

MPP < II. 

Calculation of Memory Requirement    Now let 
us consider the memory requirements of a pipeline 
schedule. We assume that the memory is reserved for 
the write set of a task as soon as it begins execution, 
and it remains reserved until the task which uses the 
data finishes execution. In other words, memory is 
reserved for some data as soon as the producer task 
begins execution and it is freed once the consumer task 
finishes execution. In a pipeline schedule the memory 
requirement is due to ILDs and LCDs. ILDs do not 
cross the boundary between two consecutive iterations 
of the steady state. All the data belonging to any ILD 
is produced and consumed within one iteration of the 
steady state. LCDs cross the boundary between two 

iterations of the steady state. Depending on the dis- 
tance (or 5) they might cross more than one boundary. 
Hence before an iteration of the staedy state can begin 
execution there is already some memory occupied by 
the LCD data which is given by : 

MevriLCD =   ^Z   e"ar x ^(e) 
eeLCD 

MerriLCD is the same at the beginning of each it- 
eration of the steady state. Hence we need at least 
MerriLCD memory for the pipeline design. The mem- 
ory required during one iteration of the steady state 
is the maximum amount of memory occupied by the 
data items during execution, MerneXec- This memory 
is both due to ILDs and LCDs. The memory require- 
ment of a pipelined design, MemReq is then given by: 

MemReq = max(MemccD,Memexec) 

In the next section we discuss the list based schedul- 
ing algorithm. 

4.1    List Based Scheduler 
We use a list based scheduler for scheduling the 

DDG on the codesign architecture. The scheduler 
maintains three ready lists, one each for HW, SW and 
memory resource. The execution of a task can be di- 
vided in to three states. When a task is selected to 
be scheduled from either HW or SW ready list, it first 
goes in to read state. When the task has finished read- 
ing it goes in to run state and then in write state when 
its writing data to the shared memory. A task in the 
read and write states could cause a memory conflict 
with another task. The scheduler resolves conflicts by 
maintaining a ready list for the memory resource. A 
task is added to HW or SW ready list when all its 
predecessor tasks have been scheduled. When a task 
is selected to be scheduled on a particular resource, 
its goes into read state and is added to the memory 
ready list. A task on completion of its read opera- 
tion runs on the appropriate resource and gets added 
to the memory ready list again when it goes into its 
write state. 

The scheduler uses the same heuristic priority func- 
tion to select a task from the three ready lists. The 
priority of a task to be selected depends on the follow- 
ing four properties in descending order : 

1. 0-Mobility: The mobility of a task is given by the 
difference between its ALAP and ASAP times. 
The ASAP time may change during scheduling 
and its updated. The ALAP time of a task is 
constant for a given initiation interval. If a task 
has 0-Mobility then it must be scheduled at that 
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time.   Otherwise the timing constraints will be 
violated. 

2. Mobility: A task with lesser mobility is selected to 
be scheduled before a task with greater mobility. 
It is a well established heuristic which is known 
to produce good results. 

3. Difference between number of read and write vari- 
ables (or data items): The memory requirement 
of a schedule is given by the maximum memory 
occupied by the data items during one iteration 
of the steady state. A task which reads more vari- 
ables than it writes would reduce the number of 
variables present in the memory. Hence it should 
be scheduled near its ASAP time. Alternatively 
a task which writes more variables than it reads 
should be scheduled near its ALAP time. 

4. Number of Successors: A list scheduling algo- 
rithm performs better when it has more choice 
in the ready list. Hence a task whose completion 
adds more tasks to the ready list is selected. 

A task with 0-mobility is always selected from the 
ready list. If no task has 0-mobility we use property 
2 to select a task, and properties 3 and 4 (in that 
order) to break ties. In the next section we present 
the retiming heuristic. 

4.2    Retiming Heuristic 
Retiming increases the distance of a dependence 

and produces an equivalent DDG which satisfies the 
following condition: 
Two graphs, DDG = G(V,E,\,5) and DDG' = 
G(V,E,X',6') are equivalent if, V(u,u) € E, the fol- 
lowing equation holds, 

\{v) - \{u) + 8(u,v) = A» - A» + 5'{u,v) 

We do retiming when we are unable to schedule a 
DDG in the given initiation interval, II. A successful 
schedule for a DDG can be obtained by decreasing the 
number of dependencies that constrain the schedule. 
By retiming we can transform a PSD into a FSD 
or NSD. The drawback of retiming is that it in- 
creases the memory requirement of the schedule. We 
can minimize this increase by using good heuristics 
to select the dependency to be retimed. But this is 
not enough. In order to produce an equivalent DDG 
other dependencies might need to be retimed. The 
increase in memory requirement due to these depen- 
dencies should also be minimized. During retiming we 
do not increase the distance of a dependence belonging 
to a recurrence. Also we ensure that no dependency 
has S < 0. 

We do retiming in two steps. In the first step 
we heuristically select a dependency to be retimed. 
Increasing the distance of a dependence necessitates 
changing the A and 6 of other tasks and dependencies. 
In a DDG there might exist a number of sets of depen- 
dencies whose distance could be increased to obtain an 
equivalent retimed DDG. In step 2 we select the set 
of dependencies which on retiming result in the least 
increase in memory requirement. As a first step to- 
wards retiming we select a dependency to be retimed. 
The priority of a dependency to be retimed depends 
on its following four properties in decreasing order: 

1. Dependency is a PSD: The primary objective 
of retiming is to reduce scheduling constraints in 
the DDG; and give the scheduler greater freedom 
in scheduling tasks on the resources. Only PSDs 
constrain scheduling and therefore only PSDs are 
retimed. 

2. Dependency between tasks bound to heteroge- 
neous resources: Increasing the distance of a de- 
pendency between tasks mapped to the same re- 
source does not necessarily help the scheduler. 
Basically the two tasks have to be scheduled on 
the same resource and will be scheduled one af- 
ter the other. On the other hand retiming a 
dependency between tasks mapped to different 
resources definitely gives more freedom to the 
scheduler. 

3. Dependency whose predecessor task has a greater 
sum of height and depth (H(u)+D(u)): The sum 
of height (H(u)) and depth (D{u)) of a task gives 
the length of the positive path to which it belongs. 
Increasing the distance of a dependency whose 
predecessor task has a greater sum (H(u) + D(u)) 
reduces the length of a longer positive path in the 
DDG. 

4. Dependency representing the least number of 
variables transferred: A secondary objective of re- 
timing transformation is to minimize the increase 
in memory requirement of the DDG. Hence we 
select a dependency representing fewer variables 
being transferred. 

We use property 1 to select dependencies to be re- 
timed, and use properties 2 , 3 and 4 (in that order) 
to break ties. Given a dependency e = {u,v) to be 
retimed we define the following four sets with respect 
to u: 

Vc = {"connected component to which u belongs } 
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Figure 5: P , S and R sets during retiming of depen- 
dency (u,v) 

P = {v e Vc\there is a path from v to u } U {u} 

S = {v € Ve\there is a path from u to v } 

ij = Vc-{Pu5} 

Figure 5 gives an illustration of the four sets. We 
can retime the dependency e = (u, v) by the following 
three equations. 

A(u) = A(u) + 1 

6{u,x) = 8(u,x) + l,Vx 6 V such that (u,x) € E 

5{x,u) = S(x,u) -l,VxeV such that (z,u) <E £ 

Application of the three equations would result in an 
equivalent DDG. However the third equation de- 
creases the distance of some dependencies. This can 
be avoided by increasing the A of all tasks which are in 
P and increasing the <5 of all dependencies whose pre- 
decessor task is in the set P and successor is in R U S. 
This is the cutset cl in Figure 5. Another way to re- 
time is to increase the A of all tasks in the set Pl)R and 
increasing the S of all dependencies whose predecessor 
is in PUR and successor is in S. This is the cutset c2 
in Figure 5. However its possible that neither cutset 
cl nor c2 give us a minimum increase in memory. We 
could obtain another cutset c'3 (see Figure 5) by par- 
titioning the set R into P and 5, so that the memory 

QUANTIZATION 

Q 
y    16 data-Items 

o 
ZIG-ZAG 

/ 

0 
16 data-items 

/' 
16 data-items 

HUFFMAN ENCODING 4 RLE o 
Figure 6: DDG for JPEG like Compression Algorithm 

increase is minimized. We use a simulated annealing 
based partitioner. The cost function being minimized 
is defined as follows. For a cut c,- = {ei,e2,...,e„}, 
the cutsize cost is given by : 

' n 

Cost — y^uar(ej) 
i=i 

var(ej) is the number of variables across the depen- 
dency ej. In the above cost function the sum gives us 
the extra memory required by the LCDs after retim- 
ing. After partitioning R into P and 5, we do retiming 
using the following two equations: 

Vu€P,A(u) = A(u) + l 

V(u,u) € E,u e P,v<£P,6(u,v) = 6{u,v) + 1 

5    Experimental Results 
We demonstrate the effectiveness of the tool in 

codesign flow by considering the design of a JPEG 
[4] like compression algorithm. The DDG of the spec- 
ification is shown in Figure 6. It consists of four tasks, 
Forward Discrete Cosine Transform (FDCT), Quanti- 
zation, Zig-Zag and RLE and Huffman encoding. All 
the dependencies have 5 = 0 and the number of vari- 
ables transfered across each dependency is 16. The 
memory read time is 16 ns and the memory write time 
is 24 ns respectively. The run times of the various 
tasks in SW and HW is shown in Table 1 [6]. Ta- 
ble 2 shows the comparison between throughput and 
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No. 

Number 

of Tasks Depth 

Non-Pipeline Pipeline Speed-up 

(%) 

Memory 

Incr. (%) Time (ns) Memory Mil (ns) II (ns) Memory 

1 3 1 110 8 90 90 16 18 100 

2 3 2 390 7 240 290 14 34.5 100 

3 5 3 230 17 .190 190 34 17.4 100 

4 6 3 1410 30 1135 1170 75 17 150 

5 8 5 750 170 600 600 190 20 11.7 

6 8 7 890 10 730 730 20 18 100 

7 8 7 740 10 425 470 20 36 100 

8 8 7 890 5 465 580 20 35 300 

9 10 4 1130 15 842 931 30 17.6 100 

10 10 6 390 34 300 300 43 23 26 

11 15 7 950 76 770 770 97 18.9 27.6 

12 15 12 1290 52 860 860 66 33.3 26.9 

13 20 7 1200 129 870 870 182 27.5 41 

14 20 14 1150 96 1010 1010 104 12.2 8.3 

15 50 6 6320 534 5640 5640 794 10.8 48.6 

Table 3: Comparison between Non-Pipeline and Pipeline Implementations for Random Graphs 

2, 4, 7, 8 and 9) we were not able to obtain pipeline 
schedules with Mil as their initiation interval. This is 
because of the memory conflicts during scheduling and 
recurrences in the graph. Memory conflicts force the 
scheduler to defer a read or a write operation thereby 
increasing II. Dependencies belonging to recurrences 
are not retimed, hence they constrain the scheduler 
leading to an increase in II. The increase in memory 
requirement of a pipeline schedule is due to the extra 
memory that is required to store data items between 
two iterations of the steady state. It is quite com- 
mon for the increase to be in the region of 100 to 300 
percent. Speed-up due to pipelining was achieved for 
all graphs. For some graphs (rows 5, 10, 11, 12 and 
13) a good speed-up was achieved with a low memory 
increment, thereby making them ideal candidates for 
pipelined implementation. 

6    Conclusion 
In this paper we have presented a pipeline schedul- 

ing technique for optimizing the throughput and mem- 
ory requirements of HW-SW codesigns. The effec- 
tiveness of the technique was demonstrated by exper- 
imentation. This technique will be an integral part 
of a larger codesign tool now under development. Fu- 
ture work will involve extension of the technique to 
include general multiple ASIC architectures with dif- 
ferent communication protocols. 
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RECOD: A Retiming Heuristic To Optimize Resource And Memory 
Utilization In HW/SW Codesigns 

Abstract 

Hardware/Software designs of embedded systems are characterized by stringent performance constraints. 
Pipelined implementation of a design is an effective way for maximizing the performance of a design. In 
this paper we present a retiming heuristic to obtain pipelined schedules for hardware-software codesigns. 
The heuristic aims at maximizing the throughput of a resource constrained codesign while minimizing its 

memory usage. The effectiveness of the proposed technique is demonstrated by experimentation. 
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Figure 2: Non-Pipelined and Pipelined Implementations of a Task Graph 

the task. The memory requirement of the implementation is the maximum memory used by one iteration 

of the loop (shown by the dotted line in the figure). This happens when tasks 2 and 3 execute in parallel. 

Task 2 needs memory for 20 data items and task 3 needs memory for 10 data items. Also at this point 

in time the variables transferred from task 1 to task 4 (10 data items) are also stored in the memory. 

Hence the maximum memory used by the implementation is for 40 data items. Now consider a pipelined 

implementation of the same task graph (lower right corner of the figure). A pipeline execution of a design 

can be divided into 3 parts. The first part which loads the pipeline is called the prologue. The second part 

is the steady state which is executed a several times. Finally the last part which down loads the pipeline is 

called the epilogue. As shown in the figure the execution of task 4 belonging to the first iteration of the loop 

is overlapped with execution of task 1 belonging to the second iteration. Once fully loaded the steady state 

completes one iteration of the loop every 200 t-units. A definite improvement over the previous design. 

The drawback is that the memory requirement has increased to 70 data items (shown by the dotted arrow 

line). 

We implement pipelined designs by using retiming transformation. Retiming to generate pipelined design 

is considered a generalization [3] of the classical transformation introduced by Leiserson and Saxe [10]. A 

similar problem is the software pipelining problem [9] in code generation for VLIW architectures. Given a 

task graph to be pipelined it can generally be retimed in more than one way. We need to select a retiming 

that gives us the least increase in memory requirements. In this paper we present a Retiming heuristic for 

optimal resource and memory utilization in HW/SW Codesigns (RECOD). 

In this paper we concentrate on the design of DSP applications. DSP applications have moderately simple 

algorithms and they demand high performance and throughput; thus necessitating search for efficient and 
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inexpensive implementations [13]. Besides many of these applications are loop oriented where a single 

block of code is executed a number of times on different set of data, thereby making them ideal candidates 

for pipelined implementation. 

In this paper we assume that the SW processor and the ASIC in the codesign architecture are themselves 

non-pipelined with respect to task execution. We also assume that the pipeline schedule is rectangular 

in nature, that is a new iteration of the steady state does not begin before the previous one is over. In 

a non-rectangular schedule the execution of a task belonging to one iteration of the steady state overlaps 

with the execution of a task belonging to the next iteration. 

The paper is organized as follows. In Section 2 we discuss previous work, in Section 3 we describe the 

graph representation and pipeline schedule, Section 4 presents RECOD, experimental results are in Section 

5 and finally Section 6 concludes the paper. 

2    Previous Work 

The term "Retiming" was introduced by Leiserson and Saxe [10] when they used it to solve the problem of 

optimizing the throughput of synchronous circuitry. Retiming was used to describe the re-distribution of 

register delays between combinational blocks in a synchronous circuit. They developed an ILP formulation 

to solve the problem. Since then retiming transformation has been used extensively in logic synthesis [11], 

high level synthesis [15] [17], HW-SW codesign [18] and DSP applications [7] [8]. Pipelining is considered a 

generalization of the retiming problem in which circuit latency is allowed to increase by allowing a change 

in the production and consumption times of output and input signals respectively [3]. 

The term "Software Pipelining" was introduced by M. Lam [9]. She used it to describe a loop scheduling 

technique for code generation of VLIW processors. In software pipelining multiple iterations of the loop 

in various stage of their execution are in progress simultaneously. This description relates it very closely 

to pipelining in hardware systems. Since then a number of heuristic [1] [6] and ILP formulations [4] [12] 

have been proposed to solve the software pipelining problem. [16] gives a good comparison and survey of 

the techniques. [2] establishes a link between circuit retiming and software pipelining. 

The work that comes closest to the paper is that of Sanchez presented in [17].' In that work, Sanchez 

has used a retiming heuristic in a high level synthesis tool that aims at obtaining pipelined designs with 

optimum throughput. The retiming heuristic retimes the head or tail dependency of the maximum positive 

path in a graph. In this paper we present a new retiming heuristic which optimizes both throughput and 

memory requirements of pipelined codesign applications. Our heuristic does retiming in two steps. In the 

first step it selects a dependency to be retimed which gives the maximum freedom to the scheduler. In the 

second step it selects the other dependencies (in addition to the first one) which on retiming result in an 

equivalent graph with the least increase in shared memory requirements. Experimental results show that 

our retiming strategy produces designs which use significantly lesser memory and operate at the optimum 

throughput rate. 
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3    Graph Representation and Pipeline Scheduling 

Graph Representation The input specification is captured by an intermediate graph format called the 

Data Dependency Graph (DDG). It represents the tasks by vertices and the data dependencies between 

tasks by directed edges. The vertices have information about the task binding (HW or SW), HW run 

time and SW run time. The edges have information about the number of variables in a dependence. 

Since we are interested in pipelining the design, we associate with each vertex an iteration index (A) and 

with each edge a dependency distance (<5). The iteration index of a task u, X(u) indicates that at the 

ith iteration of the steady state, instance of task u belonging to the (i + X(u)) iteration of the loop is 

executed. For example consider the pipelined design in Figure 2. In the first iteration of the steady state, 

instance of task 2 belonging to the second iteration of the loop is executed, hence X(task2) = 1. Similarly 

X(taskl) = l,X(task3) = 1 and X(task4) = 0. The dependence distance of an edge e, 6(e) indicates the 

distance of the dependence. In Figure 2 the data produced by task 1 at the ith iteration of the steady 

state is consumed by task 4 at the (i + l)th iteration of the steady state. Hence the dependence distance 

of edge (1,4) is 5(1,4) = 1. Similarly 5(1,2) = 0,5(1,3) = 0,5(2,4) = 1 and 5(3,4) = 1. We now formalize 

the DDG representation as follows: 

A DDG is a 4-tuple DDG = G(V, E, A, 5), where : 

• V is the set of vertices. Each vertex u € V represents a task. For each task u € V we have the 

following information available to us : 

— Ubind ■' The binding of the task, that is whether its going to be implemented in HW or SW. 

— usw : The SW runtime of the task for a particular input data on the general purpose processor. 

— Uhw '■ The HW runtime of the task if it were to be implemented as an ASIC for the same input 

data. 

• E is the set of directed edges. Each e = (u, v) € E represents a data dependence between tasks u and 

v. Every edge has information about the number of variables (evaT) represented by the dependence. 

• A and 6 are two mappings, X : V -> N and S : E -> N, representing the iteration index (X) and the 

number of iterations traversed by the dependence (5), also called dependence distance. IN is the set 

of natural numbers. 

Initially, Vu G V, X(u) = 0. Notice that the representation has no control flow constructs; it is strictly 

data flow. 

Theoretical Upper Bound on Throughput Given a DDG there exists a theoretical upper bound on 

the throughput of a pipeline schedule of the graph [17]. It is called the maximum execution throughput 

(MaxTh) and it gives the maximum number of iterations of the steady state in one time unit. The reciprocal 

of MaxTh is called the minimum initiation interval (Mil). For a particular pipeline implementation the 

initiation interval, II, is the time taken for one iteration of the steady state. For example in Figure 3, the 
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pipelined implementation has 77 = 200 t-units. The Mil is limited by two factors. Firstly the number of 

resources (HW or SW) limit MIL This is called the resource constrained Mil, ResMII. Consider again the 

example shown in Figure 2. The task graph has two tasks 1 and 3 bound to SW. Hence we need at least 

200 t-units to complete the execution of task 1 and 3. Similarly we need at least 200 t-units to complete 

execution of tasks 2 and 4 in HW. The ResMIIi due to a resource i is given by the ratio of the sum of 

the latencies of all the tasks executing on the resource i by the total number of instances of resource i [17]. 

The latency of a task u, Lu, is the total execution time of the task. It is the sum of the task's read time, 

execution time on the particular resource that its been bound to and write time. The read (write) time of 

a task is the product of the number of variables read (written) by the task and the memory read (write) 

time. Hence we have, 

, f  Usw      if Ubind = SW 
Lu = Ui+ Urdtime + V-wrtime      Where, U{ = < 

[ Uhw     if Ubind = nw 

Since the codesign architecture has only one HW and one SW resource, we can calculate ResMIIxw 

and ResMIIsw as the sum of latencies of all tasks bound to HW and SW respectively. ResMII for a 

DDG is the maximum of all the ResMIIi, therefore we have ResMII - max(ResMII'HW, ResMIISw)- 

Secondly recurrences or cycles in a task graph also limit MIL This is called the recurrence constrained 

Mil, RecMII. Let us assume that in Figure 2, the data produced by task 4 in ith iteration of the loop 

is consumed by task 1 in the (i + l)th iteration, that is let us add an edge e = (4,1) with 5(4,1) = 1 to 

the task graph. In such a case the schedule shown in the figure becomes invalid. This is because now we 

cannot overlap the execution of task 1 and task 4. Infact any schedule of the graph now takes at least 325 

t-units. The RecMIIT for a recurrence r, is given by the ratio of the sum of the latencies of the tasks in 

the recurrence to the sum of the weights (<5) of all the dependencies in a recurrence [17]. A graph may 

have more than one cycle, and RecMII is then the maximum of the RecMIIT due to each one of them, 

that is RecMII = max{RecMIIT), for all the recurrences r in the DDG. The Mil is then the maximum 

of ResMII and RecMII. That is, 

Mil = ^(ResMII, RecMII) => MaxTh = {max{ResMn, RecMII)) 

Pipeline Schedule The pipeline schedule of a task graph is characterized by its initiation interval 

27. The schedule is an assignment of start times to tasks, S(u), such that for all tasks u in the graph 

0 < S(u) < (II-1). For a dependency (u, v), the schedule time of u and v must honor the data dependence, 

that is 
S(v) + 5(u, v)-II> S(u) + Lu => S(v) > S(u) + LU- 5(u, v) ■ II 

As we will see in the next paragraph not all dependencies constrain a pipeline schedule. The dependencies 

which do not constrain a schedule can be ignored during scheduling. We obtain a pipeline schedule by 

scheduling [5] and retiming in an iterative manner as shown in Figure 3. We calculate the Mil, and try 

scheduling the DDG for MIL However due to constraining dependencies we may not be able to schedule 

the DDG in MIL If we can't we retime the DDG and try again. The objective of retiming is to reduce 

the number of schedule constraining dependencies. 
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Figure 3: Pipeline Scheduling by Iterative Retiming 

Schedule Constraining Dependencies Depending on whether S(u, v) is equal or greater than zero 

a data dependency (u, v) may or may not constrain a pipeline schedule. A dependency with S(u, v) — 0 

constrains a pipeline schedule. This is because now S(v) > S(u) + Lu is strictly positive. Essentially a 

data dependence with 5(u, v) = 0 implies that the data produced by the predecessor task u is consumed 

by the successor task v in the same iteration of the steady state and hence it constrains the schedule. 

Such a dependency is called a positive scheduling dependency (PSD) [17] or intra loop dependency (ILD). 

A dependency (u, v) with ö(u,v) > 0 gives us two cases. First consider a dependency dependency with 

6(u,v) > O'and Lu - II ■ 5{u,v) < -(II -1). Such a dependency does not constrain a pipeline schedule 

since for all values of S(u) and S(v) the data dependence is satisfied, that is 

If S(u, v)>0 and LU-II- 6{u, v) < -{II - 1) then, 

S(v) > S{u) + Lu - S{u, v) ■ II, V5(u), S{v) e [0, II). 

Such a dependency is called a free scheduling dependency (FSD) [17]. Now consider a dependency with 

8(u,v) > 0 and —(II - 1) < Lu - II ■ 5(u,v) < 0. Such a dependency is called a negative scheduling 

dependency (NSD) [17] and it will constrain a pipeline schedule under two conditions. Firstly if the pipeline 

schedule is non-rectangular then the NSDs would constrain the schedule. Secondly if the resources on 

which tasks u and v are executing are themselves pipelined then NSDs would constrain the schedule. Since 

neither of these two conditions are true in our case NSDs do not constrain the pipeline schedule. FSDs 

and NSDs together are called loop carried dependencies (LCDs) since they represent a data dependence 

between tasks executing in different iterations of the steady state. Hence for a given initiation interval II, 

the set of schedule constraining dependencies, Es is set of PSDs in the DDG, that is 

Es = {(u,v) e E\5(u,v) = 0} 
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The initiation interval II of a pipeline schedule is constrained by the length of the maximum positive path 

(MPP) in the DDG. A path p = {ei,..., en} is called a positive path, if Ve € p, e is a schedule constraining 

dependency. The Length of p is: 

Length{p) = Lw +   ^  (Lu), 
(u,v)ep 

where Lw is the latency of the tail task in the positive path. A maximal positive path, MPP of a DDG, 

is a positive path p such that, for any other positive path p' C E, Length(p) > Length(p'). For a feasible 

schedule of a DDG with initiation interval II, 

Length{MPP) < II. 

Hence during retiming we should try to reduce the number of schedule constraining dependencies which to a 

longer positive path. Before we present the retiming algorithm in the next section, we discuss the memory 

requirements of a pipeline schedule in the following paragraph. 

Calculation of Memory Requirement We assume that the memory is reserved for the write set of 

a task as soon as it begins execution, and it remains reserved until the task which uses the data finishes 

execution. In other words, memory is reserved for some data as soon as the producer task begins execution 

and it is freed once the consumer task finishes execution. In a pipeline schedule the memory requirement 

is due to ILDs (PSDs) and LCDs (FSDs and NSDs). ILDs do not cross the boundary between two 

consecutive iterations of the steady state. All the data belonging to any ILD is produced and consumed 

within one iteration of the steady state. LCDs cross the boundary between two iterations of the steady 

state. Depending on the distance (or S) they might cross more than one boundary. Hence before an 

iteration of the steady state can begin execution there is already some memory occupied by the LCD data 

which is given by : 

MerriLCD =    X   evar x <^e) 
e€LCD 

MerriLCD is the same at the beginning of each iteration of the steady state. Hence we need at least 

MemLCD memory for the pipeline design. The memory required during one iteration of the steady state 

is the maximum amount of memory occupied by the data items during execution, Memexec. This memory 

is both due to ILDs and LCDs. The memory requirement of a pipelined design, MemReq is then given 

by: 
MemReq = max(MemicD,Memexec) 

As we see by the above discussion MemLCD is a lower bound on the memory requirement of a pipeline 

schedule. During retiming we convert a schedule constraining dependency {ILD) in to a LCD which does 

not constrain the schedule, thereby increasing MemicD- Therefore during retiming we should try to reduce 

the increase in Mernico- 

Each task in the DDG is bound to a unique resource. Hence ResMII is an achievable lower bound. In other 

words we should be able to schedule the DDG in Mil time when the binding is known (and RecMII < 
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ResMII). The general case where binding is unknown increases the complexity of the scheduler. However, 

the retiming heuristic should work equally well in the general case. 

4    RECOD: Retiming Heuristic for HW/SW Codesigns 

We do retiming when we are unable to schedule a DDG in the given initiation interval, II. A successful 

schedule for a DDG can be obtained by decreasing the number of dependencies that constrain the schedule. 

By retiming we can transform a PSD into a FSD or NSD (LCDs) by increasing the dependence distance 

(5). LCDs do not constrain an iteration of the loop. During retiming we ensure that no dependency 

has 5 < 0. Also retiming should produce an equivalent DDG. Two graphs, DDG — G{V, E, A, 5) and 

DDG' = G(V,E, A', 6') are equivalent if, V(u,v) G E, the following equation holds, 

X(v) - \{u) + 6(u, v) = A» - A» + S'(u, v) 

Retiming produces a DDG with tasks belonging to different iterations. In other words dependence retiming 

helps in pipelining a DDG. 

The drawback of retiming is that it increases the memory requirement of the schedule. Since we now 

have tasks belonging to different iterations executing at the same time, we need more shared memory to 

store data between successive iterations of the steady state. We can minimize this increase by using good 

heuristics to select the dependency to be retimed. But this is not enough. In order to produce an equivalent 

DDG other dependencies might need to be retimed. The increase in shared memory requirement due to 

these dependencies should also be minimized. Hence RECOD does retiming in two steps. In the first step 

it heuristically selects a dependency to be retimed. Increasing the distance of a dependence necessitates 

changing the A and 5 of other tasks and dependencies. Decreasing the 5 of a dependence is likely to change 

it in to a PSD. Hence during retiming we only increase the distance of the dependencies. In a DDG there 

might exist a number of sets of dependencies whose distance could be increased to obtain an equivalent 

retimed DDG. In step 2 we select the set of dependencies which on retiming result in the least increase in 

shared memory requirement. 

The distance of a dependency belonging to a recurrence in the DDG cannot be increased without de- 

creasing the distance of any other dependency. Hence during retiming we do not increase the distance 

of a dependence belonging to a recurrence. A dependence not belonging to a recurrence can however be 

retimed without decreasing the distance of another dependence. 

4.1    RECOD Step 1: Heuristic To Select A Dependency For Retiming Transformation 

As a first step towards retiming we select a dependency to be retimed. The priority of a dependency to be 

retimed depends on its following four properties in decreasing order: 
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1. Dependency is a PSD. 

The primary objective of RECOD is to reduce scheduling constraints in the DDG; and give the 

scheduler greater freedom in scheduling tasks on the resources. Only PSDs constrain scheduling. 

Hence the dependency to be retimed should be a PSD, and not a NSD or FSD. 

2. Dependency between tasks bound to heterogeneous resources. 

As mentioned above the main objective of the retiming heuristic is reduce scheduling constraints in 

the graph. Increasing the distance of a dependency between tasks mapped to the same resource does 

not necessarily help the scheduler. Basically the two tasks have to be scheduled on the same resource 

and will be scheduled one after the other. On the other hand retiming a dependency between tasks 

mapped to different resources definitely gives more freedom to the scheduler. 

3. Dependency whose predecessor task belongs to a longer positive path. 

As discussed in the previous section the positive paths limit the II of a pipeline schedule. Increasing 

the distance of a dependency whose predecessor task belongs to a longer positive path helps in 
%     obtaining a pipeline schedule with smaller II and therefore higher throughput. 

4. Dependency representing the least number of variables transferred. 

A secondary objective of retiming transformation is to minimize the increase in memory requirement 

of the DDG. Increasing the distance of a dependency with more variables definitely results in a larger 

increase in memory requirement. Hence we select a dependency representing fewer variables being 

transferred. 

We use property 1 to select dependencies to be retimed, and use properties 2 , 3 and 4 (in that order) to 

break ties. 

4.2    RECOD Step 2:   Partitioning To Minimize Increase In Memory Requirement 
During Retiming 

The primary objective of retiming is to give the scheduler greater freedom. This is achieved by the 

heuristic described above. We now select the set of dependencies which give us the least increase in 

memory requirement. Given a dependency e = (u, v) to be retimed we define the following four sets with 

respect to u: 

Vc = {connected component to which u belongs } 

P = {v £ Vc\there is a path from v to u } U {u} 

S = {v E Vc\there is a path from u to v} 

R = VC-{PUS} 

Figure 4 gives an illustration of the four sets. We can retime the dependency e = (u, v) by the following 

three equations. 
\{u) = \{u) + 1 
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Figure 4: P, 5 and P sets during retiming of dependency fu,v,) 

<5(u,z) = S(u,x) + l,Wx£V such that (u,x) G E 

S(x,u) = S(x,u) — l,Vx G V such that (x,u) G 23 

Application of the three equations would result in an equivalent DDG. However the third equation decreases 

the distance of some dependencies. This can be avoided by increasing the A of all tasks which are in P, that 

is Vu G P, X(u) = X(u) +1. Now to obtain an equivalent DDG we need to increase the 5 of all dependencies 

whose predecessor task is in the set P, but successor isn't, that is V(u, v) G E,u G P,v g" P, S(u, v) = 

6(u,v) + 1. This is the cutset cl in Figure 4. Another way to retime without decreasing the 6 of any 

dependence is as follows, Vu G {PU22}, A(ti) = A(u) +1 and V(u,v) G E,u 0 S,v G S,6{u,v) = S(u,v) +1. 

This is the cutset c2 in Figure 4. However it is possible that neither cutset cl nor c2 might give us a 

minimum increase in memory. We could obtain another cutset c3 (see Figure 4) by partitioning the set R 

into P and S, so that the memory increase is minimized. We use a simulated annealing based partitioned 

The cost function being minimized is defined as follows. For a cut q, = {ei, e2,..., en}, the cutsize cost is 

given by : 
n 

Cost = ^2 var(ej) 
j=i 

var(ej) is the number of variables across the dependency ej. In the above cost function the sum gives us 

the extra memory required by the LCDs after retiming. During partitioning we ensure that if a task u is 

in partition P (5) then all its predecessors (successors) are also in partition P (5). After partitioning set 

10 
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Algorithm RECOD: Retimes the DDG 

Input : DDG 

Output : Retimed DDG with less number of PSDs 

Begin 

DDGnoscc = removejscc(DDG) 

edge(UtV) = heuTisticselect(D DGnoscc) 

if (edge^yV-) = 0) then return(7?DG,failure) 

Vc = {connected component to which u belongs} 

S = {v € Vc\there is a path from u to v} 

P =z {v £ Vc\there is a path from v to u} U {u} 

R = Vc-{SuP} 

partition (R,P, S) 

for each x £ Vc 

if (x e P) then X(x) = A(x) + 1 endif 

endfor 

for each (x,y) € Ec 

if (x € P AND y&S) then S(x, y) = S(x, y) + 1 endif 

endfor 

copy-changes(DDGno-3cc, DDG) 

ret\xrn(DDG, success) 

end 

Figure 5: RECOD: Algorithm 

R in to sets P and S we do retiming using the following two equations: 

Vu e P, A(u) = X(u) + 1 

V(u,u) e£,ti£P,v &P,6(u,v) = 5{u,v) + l 

4.3    RECOD: Algorithm 

The algorithm to do retiming transformation is shown in figure 5. A brief explanation of the functions used 
in the algorithm are as follows. The function removesccQ replaces every strongly connected component, 
scci (or recurrence) in the DDG with a single task usccj. It returns a new graph DDGn0_sCC. All the 
dependencies that are part of a recurrence sect are not present in DDGno^Cc- AH the dependencies that 
are "to" and "from" any task in the scci are now from the single task usccj. We use DDGno_sCC for 
retiming. By removing all the sec tasks and dependencies we ensure that no dependency belonging to a 
recurrence is retimed; although the A of all the tasks belonging to a recurrence might be increased. The 
changes are reflected in the original DDG by the function copy-changes (). The function heuristics elect () 
heuristically selects a dependency to be retimed (see section 5.1).  The function partitionQ as the name 

11 
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Figure 6: DDG for JPEG like Compression Algorithm 

id. Task SW time(ns) HW time(ns) 

1 FDCT 371300 8400 

2 Quant. 7560 600 

3 ZigZag 1630 400 

4 RLE U Huff. 18480 884000 

Table 1: SW and HW run times for various JPEG tasks 

suggests partitions R between P and S (see section 5.2). The two for-loops do the retiming. The first one 

increases the A of all tasks u 6 P. The second one increases the 5 of all dependencies (u, v), u € P, v £ S. 

5    Experimental Results 

To demonstrate the effectiveness of the retiming heuristic in HW/SW codesign, we consider the design of 

a JPEG [14] like compression algorithm. The DDG of the specification is shown in Figure 6. It consists 

of four tasks, Forward Discrete Cosine Transform (FDCT), Quantization, Zig-Zag and RLE and Huffman 

encoding. All the dependencies have 6 = 0 and the number of variables transfered across each dependency 

is 16. The respective run times of the various tasks in SW and HW is shown in Table 1 [19]. Table 2 

shows the estimated throughput and memory requirements for various bindings of the tasks. Columns 

two to five give the bindings of the tasks. The sixth and seventh columns have the run time and memory 

requirement of the non-pipeline design of the application. The eighth column gives the Mil of the pipeline 

implementation. Columns nine and ten give the achieved II and the memory requirement of the pipeline 

implementation. The speed-up and increase in memory requirement due to pipeline implementation are in 

columns eleven and twelve respectively. In the table we have exhaustively bound all the tasks to SW and 

HW. Since we have four tasks, we have sixteen rows in the graph. The results show that we were always 

able to schedule the DDG in Mil time. We can achieve a speed-up of upto 1.6 (row 15). The maximum 

12 
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Abstract 

Hardware'software CoSynthesis is a complex 
process that involves transforming a high-level system 
specification to an implemented hardware/software 
system that meets the specification constraints. One 
phase of the CoSynthesis process is described here: 
partitioning the specification into components and 
binding them to hardware/software resources. 
Partitioning requires an effective means to explore the 
design space; challenges include (1) supporting 
constraint-driven retrieval and (2) evaluating candidate 
solutions considering the interaction of multiple 
constraints. The CoSynthesis Tool described here 
assigns scores to candidate solutions using multiple 
design constraints, but rather than the simple sum 
approach predominant in CoSynthesis research, it uses a 
vector of rank data that does not require that equal 
weight be given to all criteria. Our results to date show 
that not only can we can process a scaleable, selectable 
set of design constraints, but when compared with a 2 
constraint Fidducia-Matheyses (FM) approach, we 
achieve better results. The flexible component retrieval 
is accomplished using our database system; the database 
is unique for three reasons: (1) it uses a hardware 
description language as the basis for its conceptual 
model, (2) it allows flexible, ad hoc querying over 
designs, and (3) it uses a fine granularity of component 
modeling to enable detailed search conditions required by 
the CoSynthesis Tool. 

1. Introduction 

Hardware/software CoDesign and CoSynthesis 
can be characterized as a binding problem: binding 
components from a database to functional specifications 
in onier to create a hardware/software system that carries 
out the desired functionality and meets performance 

S. Venkatesan 
Intel Corporation 

RN4-40, 2200 Mission Clg. Blvd. 
Santa Clara, CA 95052 

satishSscdt.Intel.com 

constraints. The CoDesign methodology used in our 
research is embodied in the hardware/software CoDesign 
and CoSynthesis project called COMET [Vem94]. The 
general goal of COMET is to transform high level 
system specifications into application specific electronic 
signal processing modules using a hardware/software 
CoSynthesis process and to produce working hardware 
within a two week time period. HW/SW 
CoDesign/CoSynthesis is assumed to be the requisite 
approach for reducing the development cycle [Gaj94] 
and time to market. Current time to market for a 
complex HW/SW system is approximately 18 months 
IKeu94]. 

An abstract representation of the major 
COMET system components is given in Figure 1. A 
user supplies a system specification that is divided into 
modules, matched to component specifications, and then 
allocated to either hardware or software synthesis 
processes. The CoSynthesis process is iterative; 
alternate bindings are used to satisfy constraints such as 
performance and area requirements. The CoSynthesis 
Tool issues requests to the design database using 
qualifications on design properties, and the query 
processor determines the set of design objects that 
subsume the request In other words, a query is a 
module description, and any modules in the database 
that have at least the desired functionality (possibly 
additional functionality) are returned. The CoSynthesis 
Tool analyzes candidate solutions and determines the 
best assignment of resources to hardware and software 
using an iterative binding algorithm. The hardware and 
software specifications are processed by hardware and 
software synthesis tools, then integrated to form a 
system that satisfies the initial specifications. The end 
result of these transformations is an application specific 
hardware design that can be fabricated along with the 
embedded software that will be executed on the 
manufactured hardware. The shaded portion of Figure 1 

* Partially supported by NSF Grant IRI-9210200 and ARPA's RASSP Technology Program, contract F 33615-93-C-1316. 
1 Author for correspondence. Phone: (513) 556-2214.  Fax: (513) 556-7326 
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highlights the subsystems described in this paper, the 
CoSynthesis Tool and the design database. 

SefiHe*Sjxsctßc»tlei8 

Figure 1. Application Environment. 

2. The CoSynthesis Tool 

The goal of the HW/SW CoSynthesis tool is 
to allocate hardware and software resources for the 
modules given in a high-level system specification. 
Input to the CoSynthesis Tool specifies the system 
functionality and performance constraints levied on the 
system by the designer. They can specify (but are not 
limited to) the final design's size, weight, power 
consumption, heat dissipation, and speed. The output 
of the CoSynthesis tool consists of bindings of 
modules to resources. The resources come from a pre- 
defined component database. It is the interplay of their 
attributes (size, weight, power, etc.) with particular 
bindings of resources to actions that determines how 
well the final design meets the performance constraints 
[Mil95]. In this paper, our preliminary implementation 
produces a VHDL configuration body as output. 
VHDL uses configuration bodies to specify bindings 
between components within a design and their 
implementation in a VHDL library of components. 
Extensions to this research have the goal of producing a 
configuration body and an updated architecture reflecting 
hardware and software resource allocations. 

The relationship of our CoSynthesis algorithm 
and algorithms used for traditional hardware partitioning 
is described in Section 2.1. Our algorithm is proposed 
in Section 2.2. 

2.1  Related Work 

Iterative techniques such as Simulated 
Annealing (SA). Kerrdghan-Lin (KL). Fiduccia- 
Mattheyses (FM). and Genetic Algorithms (GA) are 

commonly used in hardware partitioning [She94] aid 
have been in use for a decade or more [Bha94]. 
Hardware partitioning provides a means for breaking a 
system design up into smaller, more manageable pieces 
based primarily on the number of communication 
channels between the pieces. Hardware partitioning is 
not limited to one level of design abstraction or even 
application area. It can be used to facilitate design 
packaging [Bha94], design layout [Bha94], simulation 
and test [Cha94], Rapid Prototyping [Cha94], and logic 
minimization [Con94]. 

Given an initial partitioning of a system into 
two halves, iterative techniques move one circuit 
component (node), or pairs of nodes, between the 
partitions in an effort to minimize a single constraint or 
a pair of constraints. At the core of these algorithms is 
the manner in which they select the "best node" within 
the system graph to move between partitions. These 
techniques are a natural extension for HW/SW 
CoSynthesis and are the core iterative technique of 
many CoDesign or CoSynthesis approaches [Ben93] 
[Car96] [Gaj94] [Gup93] [Hen96] [Yeh95]. 

In the HW/SW CoSynthesis context, the 
hardware partitions become software and hardware 
partitions respectively. The movement of system nodes 
between the two is accomplished by rebinding the 
node's physical implementation from hardware to 
software or vice-versa. However, while cutset 
minimization remains a meaningful design constraint, 
area balancing does not. Further, one of the COMET 
project's goals is to facilitate additional design 
constraints in the CoSynthesis process. The iterative 
improvement algorithms are limited by their ability to 
readily add additional design constraints due to their 
manner of selecting the "best node" to move between 
partitions. 

The two most common hardware partitioning 
algorithms differ in how they select the "best node" to 
move. The Hdducia-Matheyses method (FM) [She94] 
for hardware partitioning starts from an initial 
partitioning of the system graph. It proceeds by rank 
ordering all the tasks in the graph based on how moving 
a task from one chip to the other impacts the overall 
inter-chip communication (cutset). Next, the rank 
ordered list is stepped through and the algorithm selects 
the first task from the list that reduces the cutset and 
does not violate a predetermined size balance (usually 
set at 40-60%) between the two chips. This task is then 
moved to the other partition and the ranked list is 
updated. This process repeats until all tasks have been 
moved. The history of all task moves is examined to 
find the point in the process where the cutset is 
minimized. 
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The Ratio   Cut   method   [Wei91]   [Cha94] 
evaluates the tasks based on the following equation 

WA' ~ 2*16*2*. j€A'C'J 

'AA' 
R"'=\\A\*\A\) 

where A and A' are the two hardware partitions and C is 
the cutset between the partitions. This equation takes 
into account the number of communication lines and 
the relative sizes of the two partitions. Once all the 
tasks have been evaluated, the task with the smallest 
value, R, is selected for movement 

The FM method may be extended for 
additional constraints, but either each constraint must be 
expressed as a range or the task ranking must be based 
on an equation that incorporates the results of the 
constraint evaluations as a simple sum. The first 
method is imprecise; the second mixes incomparable 
attributes. The Ratio Cut method suffers from the same 
restrictions. 

Our algorithm improves on the iterative 
improvement technique by selecting the "best node" for 
rebinding rather than the first node that is acceptable, as 
well as allowing additional constraints to be added easily 
to the evaluation process. Our work is primarily 
influenced by techniques from hardware partitioning, but 
we have taken an approach similar to that of the 
DESTINATION project [Mar96] for assigning tasks to 
processors in complex computer systems. They 
consider multiple constraints with user-defined weights 
combined into a single objective function, similar to 
our approach. 

2.2  CoSynthesis Algorithm 

The new algorithm, called SCOREBOARD, 
has its roots in the FM method. Our algorithm 
maintains separate, rank-ordered lists for each node that 
may be rebound for each constraint specified by the 
system specification. Each constraint specifies the 
scalar value of one dimension of a ranking vector for 
that node. The "best node" to move is selected by 
choosing the node with the smallest vector from the set 
of possible candidates to rebind. After preliminary 
system definitions in Sections 2.2.1 and 2.2.2, the 
algorithm is described in Section 2.2.3. 

2.2.1 Component Database 

During CoSynthesis, all nodes from the 
system are bound to a specific implementation from a 
database or library of hardware and software 
components. The component library. L. consists of 
components, ljjj, where: 

j specifies the class or functionality of the library 
component and 

k specifies the particular implementation for the 
component. 

Using VHDL as the design language, VHDL 
entity/architecture pairs represent the j's and k's. 
Additionally, for each ljjc component there exists a set 
of performance attributes, pi, and a set of functions, fj. 
Sample pj's include size, cost, weight, and area. 
Further, for a given j, all lj.k components implement 
the same function, fj. The task of the CoSynthesis 
Tool is to bind components from the library to nodes 
within the system such that the functions (fj) of a 
bound component (ljjc) match those of the node in the 
system, and the aggregate system performance attributes 
satisfy the system-level constraints levied by the 
designer. The data model and flexible retrieval 
mechanism are further described in Section 3. 

2.2.2 System Definition 

The input to the HW/SW CoSynthesis tool, 
Sjn, is defined as a triple (G, C, B), where: 

G   is a dataflow hypergraph, denoted (V, E) where 
V is the set of all nodes, vi, of the graph G, 
E is the set of all edges, denoted as  {(vi, K)}, 

where K is a subset of V. 
C   is a set of performance constraints, q, that 

specify S's performance constraints.  (Sample ci 
are area, weight, power consumption, and time 
delay.) 

B    is a binding set in which a binding, denoted (vi, 
lj,k). associates one vi 6 V to one and only one 
ijjt € L. Initially, B can be either the empty set 
or a user-specified set of bindings. 

Output from the HW/SW CoSynthesis tool, S0ut. is 
defined similarly to Sin. T^e output system is a triple, 
(G, A, B), where G and B are defined as above and 

A   is a set of system performance attributes. Each 
ai € A is calculated by a specific constraint 
analyzer in the SCOREBOARD tool and is 
based either on the performance attributes,  pi, 
associated with components of the binding set, 
B,   and  their  satisfaction  of  the   set   of 
performance constraints, C € Sin- 

Associated with the constraints of the input system, C, 
and the attributes of the output system. A,   is  a 
constraint satisfaction function X(ci, aj).  This function 
tetermines whether or not the attribute ai of the output 
system achieves the desired goal set by the input q. An 
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example is area; X(q, ai) compares the output system's 

area (a simple sum of the area of the bound 
components) with the designer's input area constraint. 
The goal of HW/SW CoSynthesis is then 

Given: Sin = (G, Cs, B), where B is initially either 

the empty set or a user-specified set of bindings. 
Create: Sout in which 

V i, vi € V, 3 a binding (vi, lj,k )  of vi  to a 
specific ljjc € L such that 

V i, q € of C, and aj €  A,    the constraint 
satisfaction function X(cj, ai) is satisfied. 

2.2.3 Algorithm 

Our approach improves on the iterative partitioning 
technique by incorporating a three step evaluation 
process for selecting the "best node" to move based on 
user supplied constraints. Prior to algorithm execution, 
the nodes of the system are initially bound to an 
implementation (hardware or software) from the 
component library. All nodes in the graph ate 
unlocked. The algorithm, outlined in Figure 2, proceeds 
as follows. Each constraint maintains a separate rank 
ordered list. During the first step, denoted by [1] in 
Figure 2, system nodes are inserted into each 
constraint's ordered list based on the impact of the 
node's potential movement (rebinding) on the overall 
system. From the context of the node's score in these 
ordered lists, constraint ranks are assigned to the nodes 
during step [2]; these constraint ranks are the scalar 
values for the node's rebinding vector. Finally, in step 
[3], the rebinding vectors for the nodes are examined and 
the node with the shortest vector (Euclidean norm) is 
selected for rebinding. The node is bound to the 
alternate implementation and locked, and the three steps 
are repeated until no further node rebindings are 
possible. 

While  (ULTasks * <(>)   { 
FOR EACH(CA)   { 

[1] CA->Score(ULTasks); 
[ 2 ] CA->Bank (ULTasks); } 
[3]         Task2Rebind = SVector(ULTasks); 

Bebind( Task2Rebind ); 
LTasks= LTasksu Task2Rebind; 

 ULTasks = ULTasks - Task2Rebind;  ) 
Where ULTasks = Unlocked Tasks 

CA = Constraint Analyzer 
LTasks = Locked Tasks 
Svector = ShortestVector routine 

Figure 2. SCOREBOARD Algorithm. 

The components under consideration for 
rebinding are initially retrieved from the database using 
the constraints as part of a criteria-based search (a 
query). Traditionally, each VHDL-based tool must 
contain its own parser and mechanism for searching 
VHDL design units. Our approach is to use a design 
database and query language facilities rather than 
incorporating this functionality in each tool within the 
COMET environment 

3. The Design Database 

Many of the tools in the COMET 
environment, such as tools for partitioning, synthesis, 
and performance estimation, as well as in industrial 
design environments, are VHDL-based. The general 
goals of our design database are (1) that it should 
"understand'' VHDL, and (2) allow flexible retrieval of 
components specified in VHDL. We accomplish these 
goals by defining a conceptual data model that is 
implemented in our database system Odyssey [Ven95] 
[Ven96a]. VHDL can be used as input or obtained as 
output from the database, in addition to accessing data 
through other interfaces. We define a general query 
language that provides an interactive, stand-alone 
interface, or can be used by tools to retrieve designs. la 
aus way, we can interface with existing tools and 
additionally allow greater flexibility for browsing and 
retrieving components from design libraries. Users of 
the database gain query and view facilities as well as 
more flexible storage management than with traditional 
file-based VHDL environments. 

Others have developed specialized databases for 
VLSI CAD [Sie89][Kim90][Nay91][Wag92], however, 
our research is the first that we are aware of to use a 
hardware description language as a database description 
language. Wagner examines some of the issues in using 
HDLs for database description [Wag95], but models 
designs at a coarser granularity. Modeling at a finer 
level of granularity permits queries on information 
regarding entity ports that may be of prime interest in 
the CoSynthesis process. For example, numerical 
accuracy may be an additional constraint imposed by the 
system specification; during system CoSynthesis, 
tradeoffs can be made to achieve a particular system 
numerical accuracy based on the bus widths of the 
components used in the system. 

Our approach to design data modeling and 
retrieval is to parse and store VHDL source using our 
conceptual model. The components can be directly 
accessed through a query interface, either by designers or 
tools. The instances can also be restored to VHDL so 
that legacy tools may access designs placed in the 
database regardless of their source. 
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fc= 0.0/+1.07 Vchi-o 

VR = 0.583/ + 0.07   \VR | = 0.583 

Vs =1.0/+ 0.866j   \VS\ = 1.322 
For this example, the reverser has the smallest 

rebinding vector and is the best candidate to rebind for 
this iteration of the algorithm. It is rebound and locked 
(eliminating it from consideration in the future). 
Finally, new system attribute values are calculated 
(Figure 8) and the algorithm repeats until all nodes have 
been rebound. 

Cost 
Sputter HW 1 
Reverse SW 2 
Compare      HW      10 

Area 
1 
10 
10 

23 16 

Figure 8. System Attributes after Rebinding. 

If the system constraints have not been met, the best 
solution achieved by the algorithm can be used as the 
initial bindings and the algorithm re-executed. 

5. Results and Analysis 

An object-oriented experimental 
SCOREBOARD system has been prototyped using 
C++ that accepts a VHDL entity/architecture pair and a 
constraint description. The VHDL input describes the 
system as a netlist of instantiated components while the 
constraint description indicates which constraint 
analyzers and goals to include in the SCOREBOARD 
algorithm. Although instantiated components are a 
subset of the possible VHDL language constructs that 
can be used to model systems, our approach is 
extensible to allow us to model any concurrent VHDL 
task (processes, blocks, concurrent signal assignments, 
procedure calls, etc.). Currently six primitive 
constraints are supported: cutset minimization, cutset 
maximum value, area minimization, area ma-yimiim 
value, cost minimization, and cost maximum value. 
The "minimization" constraint analyzers attempt to 
minimize their particular system attribute; the 
"maximum value" analyzers attempt to minimize a 
system attribute until a maximum possible value is 
achieved. Inheritance from a common constraint 
analyzer base class facilitates the creation and 
manipulation of additional analyzers within the 
SCOREBOARD system. The output is a revised 
VHDL architecture dividing the system into hardware 
and software components and a VHDL configuration 

body binding the instantiated components to library 
elements. Experimental data has shown this algorithm 
produces better two-constraint designs than existing 
iterative improvement methods. Further the algorithm's 
complexity is similar to existing hardware partitioning 
techniques [She94], namely Ofa2), where n is the 
number of nodes in the system. 

The following two examples depict the 
attributes of a synthesized system as the 
SCOREBOARD algorithm iterates to completion. 
Each example was generated from the same input 
system, an ISCAS 85 benchmark [ISC85], consisting 
of 1350 nodes. In the first example, the 
SCOREBOARD algorithm had three goals: minimize 
the system cutset, minimize the system area, and 
balance the respective sizes of the HW and SW 
partitions. In practice, the third goal is of little value in 
a HW/SW CoSynthesis environment It is included 
here to depict a 3-constraint example and as a further 
indication of the capability of the algorithm over other 
partitioning methods. The first two constraints, cutset 
and area minimization, are plotted in Figure 9. The x- 
axis shows a history of the iterative rebindings for 
cutset and area. Each step along the x-axis is one 
iteration of the algorithm. If the constraints of interest 
are cutset and area, then the optimal point is 
approximately around 700. Figure 10 shows the 
history of rebindings with respect to area balance 
between hardware and software as well as total area. 
Although this consideration is artificial in CoSynthesis, 
it does demonstrate how a third constraint can easily be 
accommodated in our approach. The balance constraint, 
as a percentage of each partition's contribution to the 
whole, is in Figure 10. 

Figure 9. SCOREBOARD Cutset and Area. 

Figure 10. SCOREBOARD Area Balance. 

In the second example, a fourth constraint cost 
minimization, was added to the analysis of the same 
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system to illustrate the algorithm's scalability. This 
constraint adds another dimension to the rebinding 
vector. Results are presented in Figure 11, Figure 12, 
and Figure 13. It is apparent by examining minimum 
values achieved for cutset and area balance in example 2 
that a rebinding that was appropriate in the first 
example is no longer suitable in the second when the 
additional constraint is considered. 

Figure 11. SCOREBOARD Cutset and Area. 

Figure 12. SCOREBOARD Cost and Cutset. 

Figure 13. SCOREBOARD Area Balance. 

6. Conclusions and Future Work 

Conclusions and issues for future work are 
discussed below. 

6.1 Conclusions 

The CoSynthesis Tool analyzes candidate 
solutions and determines the best assignment of 
resources to hardware and software using an iterative 
binding algorithm. Our algorithm maintains separate, 
rank-ordered constraint lists of system nodes that may 
be rebound for each constraint in the system 
specification. Our CoSynthesis tool improves on 
hardware partitioning techniques by selecting the best 
node for rebinding based on its rebinding vector rather 
than the first node that is acceptable and allowing 
additional constraints to be added easily to the 
evaluation process. 

We have proposed and implemented a data 
model that stores designs described in  VHDL and 

interfaces with legacy tools (VHDL as file input/output) 
and new state-of-the-art EDA tools (e.g., CoDesign and 
CoSynthesis tools) to allow design space exploration 
via criteria-based searching. The contribution is that 
tools do not have to be scanners, parsers, and query 
evaluators; designers and tools can continue to work 
with a widely-used modeling language, and reap the 
benefits of flexible retrieval. 

6.2 Future Work 

Future research will cover a broad range of 
both SCOREBOARD and database refinements. Near- 
term efforts will formally define and characterize the 
SCOREBOARD algorithm and an analysis of the 
quality of the synthesized design. This includes the 
evaluation of more realistic constraint analyzers and 
their impact both on the design process and the 
algorithm. Allowing user-defined constraint weighting 
to the scalar values of the rebinding vector is an 
interesting capability. Additionally, the output format 
will be refined such that the output will include a 
revised VHDL architecture containing instantiated 
components representing the hardware and software 
partitions. The software partitions would be represented 
as instantiated CPUs and memory executing the 
software. 

Further research could address the granularity of 
HW/SW CoSynthesis by treating sequential statements 
of VHDL processes as individual nodes. Designs that 
define a system's functionality at a more abstract, 
algorithmic level are not supported in the current 
version of the algorithm's implementation. Finally, 
scheduling and resource sharing would greatly aid the 
HW/SW CoSynthesis effort in that duplicate tasks 
would not be replicated in the system design. 

Areas for future database research include 
investigation of query optimization and data integration. 
Data sharing is facilitated since different 
producers/consumers of design data can use the common 
database. Data exchange and integration can also be 
facilitated for other EDA data formats and languages. 
We have investigated interchange issues for VHDL and 
the CAD Framework Initiative Design Representation 
model [Ven96b]. Formats such as SDF [SDF95] fa- 
timing delay information pose additional challenges in 
this area [Dav96]. 
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A Retiming Based Relaxation Heuristic for Resource-Constrained 

Loop Pipelining. 

Abstract 

This paper presents a fast and efficient heuristic for pipelining a loop under resource-constraints. The loop 

is represented as a dependence graph, G, whose nodes are operations that are bound to available resources 

and edges denote the data dependencies between the operations. The data dependencies restrict the degree 

of parallelism that can be achieved while scheduling the graph. We propose a fast retiming based graph 

transformation technique which relaxes the data dependencies in the graph while maintaining functional 

equivalence. Relaxing data dependencies provides more flexibility for the scheduler to schedule operations, 

thereby leading to faster throughput. Our objective is to obtain a retimed graph which when scheduled 

achieves an optimal/near-optimal pipelined steady state throughput. A detailed algorithm is presented to 

solve the problem.  We provide results that illustrate the effectiveness of our algorithm. 
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2    Definitions and Terminology 

2.1    Specification Model 

The target architecture model for our retiming framework consists of a resource set 71 = {Rx, ■ • -,Rn}. 

For a given operation n, t(n)n is the execution time for the operation n on the resource R G 71. If the 

operation n cannot be executed on the resource R then t(n)n = oo. The loop body is represented by a 

Dependency Graph. We assume that the graph is executed several times corresponding to the iterative 

computations of the loop, involving varying data sets over time. Our loop representation is an extension 

of that in UNRET [9] and is similar to the signal processing data flow graph representation in [19]. 

Definition 2.1 A dependence graph (DG) is a directed graph denoted by a 5-tuple, VQ = (V,E,\,6,ß). 

V is the set of nodes representing the operations in the loop. E is the set of directed edges corresponding 

to the dependencies. A : V H+ Af is a mapping which assigns an iteration index to each node in the DG. 

6 : E I-* J\f is a mapping which assigns an non-negative integer deiay value to all the edges in the DG. 

ß : V I-* 71 is a binding of each node to a resource. O 

Iteration index (A): Since the DG represents an iterative algorithm, each iteration of the DG execution 

invokes all the operations in the graph once. Thus if the DG is executed over N iterations, then each node 

v € V has iV instances vi, vi • • -ujv-i, VJV where V{ is that instance of the node v corresponding to the ith 

iteration of the DG. The subscript i in V{ is the iteration index (A). 

Dependency delay (8): Edges in the DG represent data dependencies. A delay of riD on an edge is 

equivalent to having n delay units on that edge. An edge uQ —v v0 (an edge from node UQ to node VQ with 

a k delay units) implies data dependence from instance uc to instance vc+k, for c > 0. In general an edge 

Ui —► Vj implies data dependence from instance u,-+c to Uj+i-+c, for c > 0. 

Depending on the level of granularity, nodes in the DG can range from simple operations like multiplica- 

tions and additions to complex macro operations like fast Fourier transforms and matrix multiplications. 

Correspondingly, the resources can range from simple multipliers and adders to off-the-shelf microproces- 

sors and FPGAs. In the rest of this paper we will use the word task synonymous with nodes and operations. 

A DG is considered iegai only if the following three conditions are satisfied: 

• Vu 6 V : \(u) > 0 C1) 

• V u — v e  E : S(u -+ v) > 0 (2) 

• V cycles c € G : 6(c) > 0,   where 6(c) =    J^   <5(u — v) (3) 
u—'v € c 

The condition (1) does not permit nodes with negative iteration indices, (2) forces all edges to have non- 

negative delays and (3) eliminates the existence of any cycle with zero or negative delay. An Initial DG is a 

DG such that Vi> € V : X(v) = 0. Dependencies between task instances belonging to the same steady state 

execution are called local dependencies while those between task instances of different steady states are 

called global dependencies. All edges with 6(e) = 0 are called local edges and denote local dependencies, 

while edges with 6(e) > 0 are called global edges and denote global dependencies. 
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2.2 Scheduling a DG 

Given a dependence graph G = (V,E,X,S,ß), we define the set E\ = {e G E : 5(e) = 0} to be the set 

of local dependencies. Only the local dependencies affect the schedulability of G. A node v G V is a head 

node if and only if, there exists no node u such that u -* v € J5j. A node u 6 V is a tail node if and only 

if, there exists no node w such that v —>• w G £/. For any node u £ V, the execution time for that node 

when executed on the resource to which it is bound (ß{u)) is called latency of that node, l(u). For any 

path u ~* v G Ei (path involving only the edges in Ei), the latency of the path, l(u ~> v), is equal to the 

sum of latencies of the nodes that belong to the path. Mathematically, 

V u G V : l(u) = *(«)/?(«) 

Vtivt6£|:I(i(^ti)=      53     *(n) (4) 

A path, p € Ei, is a critical path if for all paths p' G Ei : /(p) > /(?')• CT£ (Critical Path Latency) denotes 

the latency of the critical path in the dependence graph. 

Definition 2.2 : S(G) (Schedule of (?) 

A schedule of a the graph G = (V, E, A, 6, ß) is a mapping 5 : V ^ Ar such that: 

V(u -f «) G £/ : 5(u) > 5(tt) + /(u) ° 

The schedule of a graph, 5(G) - definition 2.2, is an assignment of start times for the execution of all the 

tasks in the graph, such that the local data dependencies are not violated. The Initiation Interval (II) of 

a loop is the time interval between consecutive executions of its steady state. Given a schedule of a loop, 

the initiation interval of the loop for that schedule, IIS, is the difference between the time at which all 

scheduled tasks finished execution and the earliest time at which any task was scheduled. 

IIS 4- max (Slv) + l(u)) - min S(u) (5) 

Since all the tasks in the critical path have to be scheduled, for any schedule S(G), IIs > CPL. 

2.3 Theoretical bounds on Initiation Interval 

It is clear that CPL poses a bound on the the II of the graph. The resource constraints and the recurrences 

present in the DG also restrict the II of the steady state [19, 12, 9]. Consider a DG with k multiplication 

operations, and a resource set with n multipliers, then, assuming multiplication takes unit time, it will take 

at least \k/n\ time units to schedule all the multiplication operations. The maximum of such time bounds 

over all resource types is the Minimum Initiation Interval (Mil) due to resource constraint, represented as 

Mllres. In the presence of a recurrence r in the DG, the steady state execution time is lower bounded by 

\l(r)/6(r)] time units to assure proper execution of the recurrence. The maximum of such bounds over all 

recurrences in the graph is the Mil due to recurrences, represented as MIIrec- Mathematically, 

MIITes = max V":'W=*' ;        MIIrec = { 
Ri€7l rii 

0        if there is no recurrence 

TeG S(r) 
max -T7-7   otherwise 
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where Ri is a specific resource type from the resource set TZ and n2- is number of such resources available. 

r is a recurrence in the DG. l(r) is the sum of the latencies of all the nodes in r and 6(r) is sum of the 

delays of all the edges in r. 

Definition 2.3 The Minimum Initiation Interval (MIIQ) achievable by any schedule for a given 

graph is the maximum of the two lower bounds discussed above. 

IIS > Mile = max{MIITes, MIIrec) D 

2.4    Retiming the Dependence Graph 

Definition 2.4 : r(G) (Retiming of a dependence graph G) 

The retiming operation transforms the graph G = (V, E, A,<5,/3) into a new graph Gr = (V,E,\r,Sr,ß), 

such that: 

V(u -+ v) € E : ST(u -> v) - 6(u — v) = (Ar(u) - A(t*)) - (Ar(u) - X(v)) a 

A retiming operation is legal if it always transforms a legal dependence graph G to a retimed graph GT 

which is also legal. Recollect that a legal DG is one which satisfies conditions (1), (2), and (3). In the rest 

of our discussion we restrict ourselves to legal retiming operations. If Gr is a retimed graph of G derived 

by a legal retime operation, then GT is functionally equivalent to G [20]. The retiming operation does not 

change the Mil of a graph. However, retiming may introduce delays on local edges thereby eliminating 

local dependencies. Eliminating local edges that belong to the critical path may reduce the CPL, which 

might lead to faster schedules. 

Figure 1 shows an example of how retiming is used to generate pipelined schedules with better throughput. 

The DG has four tasks A,B,C and D and two resources Rl and R2. Tasks .4, C are bound to Rl and 

tasks B, D are bound to R2. For simplicity we assume that all four tasks take unit time to execute. We see 

that the schedule-for the original graph tasks 3 cycles per iteration of the loop (II = 3) while the retimed 

graph has an II of 2 cycles for the steady state. Also notice that after retiming we achieve a pipelined 

schedule (Figure 1-b) while the schedule produced for the initial graph is non-pipelined (Figure 1-a). 

3    Resource-Constrained Loop Pipelining 

In this section we present our algorithm that attempts to generate an optimal resource-constrained pipelined 

schedule for a given dependence graph representing a loop. We consider a pipelined schedule optimal if 

the steady state initiation interval of the schedule (I Is) is equal to the minimum initiation interval of the 

loop (MIIQ) as given in definition 2.3. Given the initial graph of the loop we try to produce the retimed 

graph which when scheduled achieves the best possible steady state throughput. 

Since we want to achieve the best throughput, the aim of the retiming algorithm must be to eliminate as 

many local dependencies as possible. Figure 2 shows two examples where retiming is used to eliminate 

local dependencies in a DG.  The underlying retiming operation used in Figure 2 is the one referred to 
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(b) - Equivalent Retimed DG and its pipelined schedule 

Figure 1: An Example of Retiming to generate pipelined schedules 

as nodal transfer in [12], which is same as dependence retiming transformation presented in [9]. We shall 

call it the the function shift-node. For a given node v € V, and for a positive integer k the function 

shift.node(v,k) performs the following steps: 

. Xr(v) *- \(v) + k 

• \/(u -+ v) € E : Sr(u -*■ v) — 6(u -* v) - k 

• V(v -*w) € E : Sr(v -*• tw) *- 6(v ->■ w) + k 

The shift.node(v, k) function transforms a given DG into an equivalent retimed DG satisfying definition 

2.4. However, shift.node(v, k) will be a legal retiming operation only if for all edges u -► v € -E : S(u -* 

u) > fc, otherwise edges with negative delays will be created. A X>G is defined to be systolic if it has no 

local dependencies [21], i.e. Ve G E : (5(e) > 0. For a systolic £G it is trivially possible to obtain a schedule 

©      ©      ©      ©      ® 
(b) • Example 2 

Figure 2: Retiming Transformations to Eliminate Local Dependencies 

(a) - Example I 
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Algorithm 3.1 (Retiming an Acyclic DG) 

G = (V,E,X,6,ß) : The Initial DG to be retimed.    > The initial graph is acyclic 

procedure retime.acyclicJ)G(G) 

begin 

while (3 head node u eV such that (3 u -* v € E : 6(u -=■ v) = 0) ) do 

shift.node(u, 1); 

return G 

end 

Figure 3: Retiming a cyclic DG 

that is optimal with I Is equal to MIITes. 

If the initial graph has no cycles then it is always possible to introduce positive delays on all its edges 

and achieve the optimal throughput. Algorithm 3.1 is simple procedure which eliminates all local edges in 

an acyclic DG, just by making calls to the shiftjnodeQ function. Figure 2-(b) illustrates the flow of this 

algorithm when applied to a acyclic DG. In Algorithm 3.1, since the node u is a head node, we do not 

create any edges with negative delays. In the case of DGs with cycles, it is not always possible to eliminate 

all local edges. Consider the initial cyclic DG in Figure 3. Any legal retimed graph of the initial graph 

always has two local data dependencies. In more general terms it can be easily proved that for all cycles 

c in the graph, 6(c) (sum of the delays of the edges in the cycle) does not change with retiming. Thus 

for DGs with cyclic dependencies, there are cases when we can only shift around delays (i.e. reducing the 

delay value on certain edges and adding it to others) rather than creating new delays. 

Although for any cycle, c, in the DG, 6(c) is constant over retiming, the number of positive delay edges in 

Figure 4: Relaxing a cyclic DG 
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Figure 5: Resource-constrained Loop Pipelining Methodology 

obtain the pipelined throughput. If the throughput achieved by the scheduler is equal to MIIQ, then the 

optimal steady state throughput has been achieved and we do not proceed to phase two. We use a simple 

list-scheduler [22] with mobility of the nodes as the primary priority. In the second phase we pass G', the 

output of phase one, to a retime and schedule algorithm. We now present the details of both the phases 

of our algorithm. 

3.1.1    Phase I Algorithm 

In the first phase we try to transform the given initial graph into an MRG. Our approach is presented 

in Algorithm 3.2. Before invoking the algorithm we identify the set of edges in the DG which belong to 

recurrences. A directed edge from node u to node v belongs to the recurrence set, 1Z, if there exists a 

directed path from v to u (i.e. there is a cycle involving the edge u -* v). Mathematically, 1Z = {u -*■ 
v G E | 3 path v ^ u). Edges that belong to H are called recurrence edges and the rest are called 

non-recurrence edges. The procedure relax-DG{) in Algorithm 3.2 has two while loops. The first while 

loop transforms all non-recurrence local edges into global edges. The second while loop tries to introduce 

delays on local edges that belong to 1Z. 

Relaxing non-recurrence edges: This is done in the first while loop of the algorithm 3.2. Consider an 

zero delay edge u — v that does no belong to any recurrence. We follow a simple approach to introduce 

a unit delay on this edge without decrementing existing delays on any other edge of the graph. For all 

nodes, n, belonging to the set that includes the node u and all nodes from which u can be reached, perform 

node.shift(n, 1).   The above retiming will introduce an additional unit delay on all out edges from u 
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Algorithm 3.2 (Phase I - Relaxing a DG ) 

C = (V, E, A, 6, ß) : The Initial DG to be relaxed until it is a MRG. 

1Z : The set of recurrence edges that belong to E 

procedure relax J)G{G) 

begin 

fc> Eliminate all non-recurrence local edges 

while (3(ti -*v)€E s.t. (5{u -* v) = 0) A (u — v <£ V.)) do 

begin 

for each n G {{u} U {k \ 3 a path k ~> u}) do 

shift-node(n, 1) 

end while 

> Now try to eliminate local edges belonging to recurrences. 

while ( [u — v, shift] «— get_next_reIaxable_edge(G) ) do     > loops until function returns NULL 

begin 

shift.node(u, shift) 

for each edge t —> u £ H do 

begin 

if {6(t — u) < 1) then 

d *- l-6(t-*v) 

for each n G ({t} U {k \ 3 a path k ~»t}) do 

shift.node(n, d) 

end if 

end for 

end while 

end 

(excluding the self loop), while not introducing any new local dependency in the graph. Thus the edge 

u —*■ v is no longer a local edge. 

Figure 6 illustrates non-recurrence edge relaxing, (a) is the initial graph. The non-recurrence zero delay 

edge B -*• D is selected to be relaxed. A,C are the nodes from which B can be reached. Hence, the 

shift.node(n, 1) function is performed on nodes B, A and C. (b) is the graph obtained after all shift-nodes 

are performed. Notice that for all edges from one of the three nodes (A, B, C) to any of the remaining 

nodes, the delay on the edge is increased by one unit. So in (b) we see that delays are introduced on the 

edges B -*• D and C -* D. We continue this procedure until all local dependencies are eliminated. Figure 

6-(c) shows the graph obtained after all the local dependencies are eliminated. 

Relaxing recurrence edges: This is done in the second while loop of the algorithm 3.2. Consider a 

zero delay recurrence edge u -* v in the graph. The approach taken for non-recurrence edge will not work 

here because u is reachable from itself. However if all recurrence edges incident on u (excluding self loop) 

have delay > kD units, for some positive integer k, then we can perform shift.node(u,k - 1). This will 

introduce a positive delay on the recurrence edge u -* v and all recurrence edges that are incident on u will 

remain positive. However non-recurrence edges incident on u may be transformed into local dependencies. 

These new local dependencies can be eliminated through the approach previously discussed.   As stated 
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Algorithm 3.3 (Select an Edge to Relax) 

G = (V,E,X,6,ß) : A node has to be selected from then input graph G 

selected[e] : selected is a global boolean array. selected[e] denotes if the edge e has 

already been selected or not. Initially all edges are marked unselected. 

11 : The set of recurrence edges that belong to E 

function getjiext-relaxable.edge(G) : (u -*• v : E, shift : int) 

begin 
while ( 3 edge (u-*v)€K such that (not selected[u -»■ v]) A (6(u -+ v) = 0) ) 

E' - {(* -+ u) G 111 t ± u} 

shift *- min 6(e) 
e€E' 

if (shift > 1) then 

selected[u —* v] <— 1 

return (u —► v, shift — 1) 

end if 

end while 

return NULL 

end 

earlier the sum of the delays on any recurrence is constant. So, essentially, we select nodes belonging to 

recurrences that have excess delays on all recurrence edges incident on them and redistribute the excess 

delay to their outgoing edges. 

The function getjiext-relaxa.ble-edge(G) selects the candidate recurrence edge to be relaxed next. The 

function also returns an integer value, shift, by which the selected edge can be relaxed. The selection 

function is shown in algorithm 3.3. This function selects nodes belonging to recurrences such that all 

recurrence edges (excluding self loops) incident on it have a delay greater than one. If no such unselected 

node exists then it returns null. The integer value, shift, returned by this function is equal to one less than 

the least delay on the recurrence edges mentioned above. For each edge, u -+ v, selected by the selection 

function, shift.node(u, shift) is performed. Thus delays on all outgoing edges of u win be increased by 

shift and delays on all edges incident on u will be decreased by shift. This will eliminate the local 

dependency u-*v. Due to way shift was computed, positive delays are maintained on all recurrence edges 

incident on u. The only local dependencies that may be created are on the non-recurrence edges incident 

on u. However using the technique discussed before to relax non-recurrence local dependencies, these new 

local edges are eliminated. 

Figure 7 shows an example of relaxing recurrence edges. In Figure 7-(a) the local recurrence edge B — C 

is chosen to be relaxed and the value of shift is 2 (the excess delay on the edge D -* B). shift.node(B,2) 

is performed to distribute the excess delay to the local node B -+ C. Notice that in Figure 7-(b) the edge 

D -f B now has a unit delay. In order to maintain the unit delay on the non-recurrence edge A — B, a 

shift.node(A,2) is performed. The graph (b) is an MRG and so the selection function of Algorithm 3.3 

returns null. 

10 



88 

(a) - Initial DG (b) - Edge B->D is relaxed (c) - All non-recurrence 
edges relaxed 

Figure 6: Relaxing Non-Recurrence Edges 

relax 
edge B->C 

(a) Initial DG (b) Edge B->C relaxed 

Figure 7: Relaxing Recurrence Edges 

3.1.2    Phase II Algorithm 

The phase two algorithm is invoked if the MRG obtained after phase one does not produce a schedule 

that achieves the optimal steady state throughput. Since the schedule is not optimal, the resources are 

not fully utilized. There are gaps in the schedule where certain resources are idle. These gaps are created 

due to presence of certain local data dependencies. We identify such dependencies and introduce delays on 

them at the expense of introducing other local dependencies. The retimed graph is scheduled again and 

the process is continued either until the optimal throughput is achieved or until all edges are tried. The 

best throughput is reported if the optimal value is not achieved. 

Figure 8 illustrates our phase two algorithm. The graph in (a) is the DG obtained after phase one. The 

graph has four tasks. Tasks .4 and B are bound to the processing element 2 (PE2) and have execution 

times of 40 and 60 cycles respectively. Tasks C and D are bound to the processing element 1 (PE1) and 

have execution times of 50 and 45 cycles respectively. The MIIres is equal to 100 (max(60+40, 50+45)). 

11 
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Figure 8: Illustration of the Phase 2 algorithm 

There are two recurrences in (a) - A — B ->■ C ->■ A and A -*• B -+ D -* C -+ A. MIIrec is equal to 

150 (max(150/l, 195/2)). Thus the JV/i7G for the DG is 150 (max(150,100)). Figure 8-(c) is the schedule 

obtained for the graph in (a). The throughput obtained for (a) was 195 cycles. We notice that PEl is not 

utilized for the first 100 cycles of the schedule, which is what we call gap in the schedule. The gap is created 

due to the local dependency B -* C. The task C has to wait until task B completes execution. Hence, 

local edge .B -* C is chosen to be relaxed. To create a delay on this edge, shift.node(B, 1) is invoked, but 

since the edge A ->■ B is also a local edge, shift.node(A, 1) is in turn called. In general shift-nodeQ is 

recursively invoked until a legal DG is obtained. 

Figure 8-(b) is the DG obtained after the edge B -*■ C is relaxed. Notice that the edge C -*■ A is now 

a local edge. The iteration indices of A and B are incremented by one. Figure 8-(d) is the schedule for 

the retimed DG in (b). This schedule is a pipelined schedule representing the steady state execution of 

the loop. The schedule achieves the optimal steady state throughput of 150 cycles per execution. If the 

optimal solution were not achieved, the algorithm would identify the local edges causing gaps and continue 

the relaxation process. A resource is considered aiive until the time the last task scheduled on it completes 

execution. It is a critical resource if it is alive beyond the optimal schedule time of the steady state (MIIQ)- 

Gaps on non critical resources are ignored. If there are more than one unselected local edges causing gaps, 

then we choose one of them based on priorities such as criticality of the resource, gap size, and edges 

belonging to the critical path. 

UNRET [9] also uses a retime and reschedule approach. But, instead of looking for gaps in the schedule 

like our phase 2 approach, it picks an unselected head node from the DG, performs shift-node on it and 

reschedules the retimed DG. The process continues either until optimal throughput is achieved or until all 

nodes are selected. The phase 2 approach we follow is efficient because each retiming move is dependent 

on the feedback from the schedule produced, rather than arbitrarily choosing a head node as in [9]. The 

main difference between our resource constrained loop-pipelining methodology, presented in Figure 5, and 

that in [9, 11] is the lack of phase 1 in the later. The advantage of the relaxation scheme followed in phase 

1 is that there may be no need to resort to the phase II algorithm because the relaxed graph obtained as 

12 
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Example Num. of Num. of MIIa 

Number Tasks Dependencies (cycles) 

1 40 80 1282 

2 50 150 1852 

3 100 300 2788 

4 100 500 3281 

5 200 1000 6774 

6 300 1500 8744 

7 400 1600 12008 

8 400 2000 13264 

9 500 2000 15353 

10 500 2500 15467 

Table 1: Design Data for the Test Examples 

the result of phase I produces the optimal schedule. Even in the case when phase II cannot be avoided, 

the convergence time of phase II when preceded by phase I is usually much faster than just phase II alone 

because in the former case the second phase starts off with as maximally relaxed graph. In the next section 

we present results to justify the above claims. 

4    Results 

In this section we present results of our resource-constrained loop-pipelining methodology shown in Figure 

5. We compare our algorithm against the retime and schedule scheme in UNRET [9]. We have implemented 

all algorithms in C++ on a Sparc 5 Unix workstation running at 143Mhz clock. The reason why we chose 

UNRET for our comparison is that the later has been compared against several known pipelining schemes 

and proved effective in [9]. 

We have implemented a dependence graph generator that can produce synthetic graphs of varying com- 

plexities. The generator takes a input the number of nodes, number of edges, number of resources available, 

execution time range and maximum delay on any edge. Table 1 presents the details of the synthesized de- 

pendence graphs generated that are used to study the efficiency of our methodology. To keep the scheduler 

simple, we consider two resources like the example in Figure 8. Each task is mapped randomly to one of 

the resources, and the execution time is randomly selected from the uniformly distributed interval [20; 100] 

cycles. The maximum delay value on any edge is 3 delay units and the probability of an edge being a local 

dependency is 0.8. All graphs generated are legal dependence graphs. Table 1 also shows the theoretical 

bound on the initiation interval of any pipelined execution for all the ten test graphs. 

Table 2 compares our loop-pipelining algorithm against that of UNRET for the 10 examples in Table 1. 

Column 2 (C2) is the amount of execution time spent on Phase I of the algorithm, C3 is the time spent in 

Phase II, and C4 is the total execution time. Column 6 is the time taken by retiming approach presented 

in UNRET. All times are reported in milli seconds.  Columns 5 and 7 are the cycle times of the fastest 

13 
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Example 

Two Phased Algorithm UNRET 

Speedup Phase I Phase II Total Us Time Us 
Number Time (ms) Time (ms) Time (ms) (cycles) (ms) (cycles) (times) 

1 1.1 0 1.1 1282 43.8 1282 39 

2 0.8 7.8 8.6 1852 184.3 1881 21 

3 3.6 0 3.6 2788 215.0 2788 60 

4 2.3 486.1 488.4 3519 894.5 3607 2 

5 5.0 36.0 41.0 6774 1240.0 6774 30 

6 7.9 45.7 53.6 8744 1195.1 8744 22 

.    7 23.3 87.7 111.0 12008 4196.2 12008 38 

8 13.3 60.1 73.4 13264 5236.8 13264 71 

9 19.0 0 19.0 15353 2645.0 15353 139 

10 21.1 394.0 415.1 15467 8123.0 15467 20 

Table 2: Resource Constrained Loop Pipelining : Results 

pipelined schedule produced by our approach and UNRET's approach respectively. The numbers in bold 

indicate that the optimal throughput time was achieved. Our algorithms achieves the optimal throughput 

for 9 of 10 examples. For example 4 both approaches failed to produce the optimal throughput. 

The result we want to highlight in Table 2 is the speed up in the execution times. For the 10 examples, 

on an average, our approach is about 44 times faster than that of UNRET. Only for example 4, where 

both approaches fail to produce the optimal result, we do not see a substantial speed up. UNRET is slow 

because of the time it spends in the scheduler. Each time a shift.node- -«peraiion is done, the graph is 

rescheduled. As the size of the graph increases, scheduling becomes much slower. Our phase 2 algorithm 

also uses a retime and reschedule approach like UNRET, but we differ in the way the graph is retimed. 

The reason for the speed up is the presence of the relaxation algorithm of phase I. For examples 1, 3, and 9 

phase II was not needed. For the remaining examples, although phase II was needed, it converged toward 

the optimal solution much faster than UNRET. Thus, our approach is atleast as efficient UNRET in terms 

of throughput achieved for a given loop, while at the same time it's execution time is several magnitudes 

faster than the later. 

5    Conclusion 

This paper presented an efficient two phased algorithm for resource-constrained loop pipelining. Our algo- 

rithm extensively uses retiming techniques [7] to generate pipelined schedules. The focus of our algorithm 

was to achieve the best possible steady state throughput for a given loop while expending minimal com- 

putation time. The effectiveness of our algorithm was illustrated through several synthetically generated 

dependence graphs, representing loops of varying complexities. Results show that execution time of our 

algorithm is much faster than the scheme in UNRET [9] while not sacrificing the quality of the steady state 

14 
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throughput. Currently we axe applying the our loop-pipeling algorithm to a hardware/software codesign 
framework to produce pipelined hardware-software codesins. 
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1    Introduction 

Initial attempts at multicomponent synthesis involved carrying out high level synthesis and then par- 
titioning the resultant design to realize a multichip design. High level synthesis converts a behavioral 
specification of a digital system into an equivalent RTL design (composed of a data path and a finite state 
controller; the data path is a composition of components selected from a register-level component library) 
that meets a set of stated performance constraints. This RTL design is then partitioned onto multiple chips 
to realize a multicomponent design. Recent efforts in system-level synthesis have led to the development 
of high level synthesis systems that can produce multichip digital systems [18, 46, 10]. These systems, 
however, do not consider the impact of packaging on high level synthesis and hence designs produced by 
these systems cannot efficiently use available high performance packaging technology. 

Recent and ongoing revolution in electronics packaging has resulted in many high performance packaging 
technologies such as thin film multichip modules (MCMS). Packaging significantly impacts the performance 
and cost of systems. High level synthesis systems can no longer target just single chip designs or multichip 
designs without considering packaging technology. To make effective use of MCM technologies, high level 
synthesis systems must generate multichip structures taking into account the impact of packaging on system 
performance, heat, and cost. 

Multicomponent Synthesis with Hierarchical Package Design is the process of high level synthesis targeting 
multichip and/or multicomponent implementations of the input behavioral specification to take advantage 
of available packaging technologies. Multicomponent synthesis and hierarchical package design is char- 
acterized by simultaneous synthesis of: (1) multiple register-level designs that interact with each other 
and together implement the function specified in the input behavioral specification; (2) a composition of 
these designs into a hierarchical structural design; and (3) a mapping of these register level designs and 
hierarchical structures onto efficient physical packages to realize a package hierarchy for the design. 

Hierarchical RTL Partitioning and Package Design: Traditional partitioning and package design is re- 
stricted to a single level. A design is partitioned onto multiple packages at a particular level. However, 
digital designs occupy a hierarchy of packages from bare dies to boards (or backplanes and higher as 
needed). Also, packages come in various sizes with differing area and pin capacities and dollar costs. Cost 
effective packaging solutions for designs can be generated by carrying out hierarchical partitioning of the 
input RTL description onto a specified package library. 

Payne and van Cleemput [38] developed an automatic partitioning technique for logic gates in order to meet 
gate and pin count constraints on chips. Beardslee et al [1] developed SLIP, an environment for system- 
level interactive partitioning. SLIP provides routines for maintaining and modifying a design hierarchy. 
These routines are used by partitioning algorithms to update and maintain design data. Saab and Rao 
[43] proposed an evolution based approach for partitioning logic circuits. Their approach takes constraints 
on the size of each part and number of pins. Also takes testable and critical nets into account during 
partitioning. Testable nets are cut to make them observable and critical nets are not cut. 

Resnick designed SPARTA [39] to evaluate RTL designs with a spreadsheet-like approach. SPARTA checks 
for violation of area, power, and pin count constraints. Shih, Kuh, and Tsay [44] use a clustering step to 
satisfy timing constraints before using the Kernighan-Lin algorithm to partition functional blocks into a 
multicomponent design targeted to multichip modules (MCM). Vemuri applies genetic algorithms for parti- 
tioning register level designs for MCMS [47, 51]. A comparison with simulated annealing based partitioning 
is also presented. 

Walker and Thomas [53] describe manual partitioning as part of design transformations in high level 
synthesis. McFarland [25] uses a hierarchical clustering technique, based on a measure of similarity, in 
partitioning behavioral hardware descriptions. These clustering algorithms are used in BUD [29] to perform 
a part of the allocation and module binding phase in data path synthesis in DAA [28]. Lagnese and Thomas 
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use a multistage clustering technique to partition a behavioral specifications into multiple processes to 
improve the quality of single chip designs [23, 24]. The approach shows significant area reductions in single 
chip designs, but does not consider design constraints or multichip implementations. Gupta and De Micheli 
[10] use the Kernighan-Lin and simulated annealing techniques for partitioning functional models while 
satisfying area and timing constraints. Pin-sharing or area/delay characteristic of registers, multiplexers, 
controllers, or wiring are not considered. Design constraints are not considered. Kucukcakar and Parker 
[17,18] describe CHOP, a framework for interactive partitioning, in which the designer creates and modifies 
partitions and CHOP evaluates the validity of each partition by searching for possible implementations 
through predictions. Vahid and Gajski [46] describe partitioning at the algorithmic level. Clustering and 
Kernighan-Lin algorithms are used in partitioning. A preliminary bit-slice synthesis of behavioral objects 
in the design is performed prior to partitioning to generate performance characteristics of synthesized 
behavioral objects. Operator sharing across concurrent blocks is not considered — each concurrent block 
is synthesized separately and gets a set of dedicated hardware resources. During partitioning, as the 
composition of the design changes, new performance characteristics are not generated. 

We develop a generic hierarchical graph partitioning and packaging model for (1) multicomponent synthe- 
sis with hierarchical package design and (2) hierarchical RTL partitioning and package design and propose 
a generic hierarchical partitioning and package design algorithm to accomplish the tasks. We present a 
generic input graph specification model for behavioral descriptions and RTL netlists (post high level syn- 
thesis) and a model for packaging options. We, then, formulate the hierarchical partitioning and package 
design problem and propose a solution. We, first, develop a mathematical model of the hierarchical parti- 
tioning and package design problem and, then, map our problem domains, (1) multicomponent synthesis 
with hierarchical package design and (2) partitioning register level designs onto a hierarchy of packages 
(from a package library), onto the mathematical model. We, then, propose a solution to the hierarchical 
partitioning and package design problem. We present experimental results for both approaches using our 
hierarchical partitioning and package design algorithm for some examples. And, finally, we present a com- 
parison between multicomponent synthesis and hierarchical RTL partitioning and discuss the validity and 
applicability of our approach for modern designs and high performance packaging technologies. 

2    Problem Formulation 

An Example: Figure 1 shows an example graph. Consider the set of nodes of the graph, N = {ni, n-i, n3, n4, n{\. 
We shall use this example to illustrate some definitions in the problem formulation. Though we present 
the formulation for a generic graph, we discuss domain specific details for multicomponent synthesis and 
RTL partitioning as we present definitions. 

The problem is introduced incrementally. Definitions 2.1 and 2.2 introduce the concept of a hierarchical 
k-level partition of a set. Definition 2.3 extends our notion of a k-level partition of a set to a k-level 
partition of a graph. Definition 2.4 defines a set of package levels. Definition 2.5 outlines a model for 
specifying package alternatives and their associated properties. Definition 2.6 shows the binding between 
a k-level partition of a graph and a set of package alternatives. The performance attribute computations 
are outlined in Definition 2.7. 

Definition 2.1 A 1-level partition of a set A/" is a system, <S, of nonempty sets (called segments) such that 
(a) S is a system of mutually disjoint sets, i.e., if C € S, D € <S, and C # D, then C H D = <p, 
(b) the union of S is the whole set Af, i.e., \JS — H. 

The set S = {si, $2,S3}, in Figure 1, defines a 1-level partition of N. 
$1 = {nj.712}, 52 = {nz,n4},  and 33 = {n5}. 
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Ns{n1,n2,n3,n4,n5} 

P1=S = {s1,s2,s3} 

s1={n1,n2} 

S2 = {n3,n4} 

s3 = {n5} 

P2 = {s11, »12,313} 

s11a{s1} 

s12 = {s2} 

313 = {33} 

P3 = {s21} 

S21={s11,s12,s13} 

Figure 1: An Example Graph and its k-level Partition 

Definition 2.2 A k-level partition, V, of a set A/" is a set of 1-level partitions Pu P2,..., Pk such that 
(a) for 1 < i < k - 1, Pi+1 is a 1-level partition of Pi, 
(b) Pi is a 1-level partition of Af. 

The 3-level partition of N (see Figure 1) is given by: 
Pi = S = {s1,s2,sz}, 
?2 = {«li, 5i2,5i3}; sn = {$i}, 312 = {52},  and 313 = {53}, and 
■^3 = {<S2l}; 52i = {5ii,3i2,3i3}. 

We extend the notion of a k-level partition of a set to define the k-level partition of a graph G = (N, E), 
where N is the set of nodes and E is the set of edges. In the case of multicomponent synthesis, the input 
behavioral specification viewed as a process graph is the input graph, where N is the set of processes and 
E is the set of communication signals. In the case of RTL partitioning, the graph is the input RTL netlist, 
where N is the set of register level components and E is the set of interconnections between register level 
components. 

Definition 2.3 A k-level partition of a graph G = (N,E) is a k-level partition of N, where N is the set 
of nodes and E is the set of edges. 
(a) area of a node n 6 N is given by A(n), 
(b) switching activity of a node n € N is given by H(n), 
(c) clock speed of execution of a node n 6 N is given by T(n). 

The performance attributes of nodes in the graph, A(n), H{n), and T(n), are assumed to be primi- 
tive values supplied with the graph specification. In the case of multicomponent synthesis, performance 
attributes of nodes and level-1 partition segments in the graph, A(n), H{n), and T(n), are determined 
through scheduling and performance estimation of individual nodes (level-1 partition segments) (see Sec- 
tion 3 and [19]). In the case of RTL partitioning, performance attributes of nodes are obtained from a 
register level component library. Only the area attribute of register level components is supported at the 
RTL level. 

Definition 2.4 The level set, C, is a set of k natural numbers 1,2,.. .,k, i.e 
C = {l,2,...,k}. 
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Area Switch Pin Speed 
Capacity Capacity Capacity Capacity Cost Level 

Id a(p) (sq mm) n(p) b(p) t(p) (ns) c(p) (S) lmap(p) 
Pi 5 400 40 50 400 1 
P2 10 400 80 50 600 1 
Pz 18 1000 84 50 1500 1 
PA 6 600 40 50 250 2 
Ps 12 600 80 50 300 2 
PQ 20 1200 84 75 600 2 
P7 40 5000 64 100 200 3 
Ps 60 5000 84 100 400 3 

Table 1: Example of Package Alternatives 

Definition 2.5 
(1) P is a set of package alternatives, i.e., P = {p\,p2, ■ • -,pn} with 

area capacity a(p), switching activity capacity h(p), pin capacity b(p), speed capacity t{p), and 
cost c(p) for p € P 

(2) Irnap is a function that maps elements of P to the level set 
Irnap : P -+ £ 

(3) The minimal elements, Pmin, of P are given by 
Pmin = {p\p€ P and lmap(p) = 1} 

(4) The maximal elements, Pmax, of P are given by 
Pmax - {p I P € P and lmap{p) = k} 

(5) A relation -< is defined in P such that 
P\ < p2 iff package p\ can be contained in package pz, i.e., 
Imaplpz) = lmap(pi) + 1 

(6) The defining size of a package set P is the package level of the maximal elements, i.e., 
defining size = lmap(maximal element) = k. 

Table 1 shows an example set of package alternatives with area capacity, heat capacity, pin capacity, speed 
capacity, cost, and lmap defined for all its members. The defining size of this package set is three. 

To realize a hierarchical package design, the k-level partition of a graph (Definition 2.3) needs to be bound 
to packages from the available set of package alternatives (Definition 2.5). Definition 2.6 describes this 
binding. 

Definition 2.6 A binding of a k-level partition of a set Af to a set of package alternatives P yields a set 
of map functions M: 

M = {mapi,map2,...,mapk} 
mapi: P; —* p,-, Pi € J>, Pi C P, Pi is a bag, i.e., duplicates are allowed in p; and 
Vp € Pi lmap(p) = i 

such that 
if 5 is a segment in Pi, then 

mapi(Pi) >■ mapi-i(S) i.e., Vp € mop:-(Pj) and V? £ mapi-^S), p y q. 

Consider the 3-level partition of N from Figure 1. A binding of this 3-level partition of N to the set of 
package alternatives from Table 1 yields the following set of map functions: 
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j\A = {Tnapi,map2,Tnap^}, 

mapi : Pi -* {pz,P3,P2}, 
mapi : P2 -* {pG,pe,Ps}, and 
maps : P3 -+ {^s} 
mapz{Pz) >■ map2(P2) >- mcpi(Pi), i.e., 
lmap(ps) = /map(p3) + 1 
lmap(p&) = lmap(pe) + 1. 

To find a package design that satisfies constraints imposed by packages, rules of computation for perfor- 
mance attributes of partition segments need to be developed. Definition 2.7 outlines rules of computation 
to determine area, switching activity, pins, and speed of partition segments. Performance attributes of 
partition segments at higher levels of packaging are computed from performance attributes of constituent 
parts at lower packaging levels. Performance attributes of segments at level-1 are computed from primitive 
attributes of nodes in the input graph. 

Definition 2.7 The computation rules for the physical attributes of area, heat, pins, and speed of a 
segment 5 in a 1-level partition P{ (part of a k-level partition V) are defined below: 

for 2 < i < k: 

(a) area of segment A(S) is given by: 

A{S) = Yl a{mapi-i{s)) 

(b) heat of segment E(S) is given by: 

tf(5) = £*(*) 

(c) pins of segment B(S) are given by: 

•B(^) = ^2 Zx, £x spans segments sa and sy, sa € S and s& € Sy;  Sy € P;,  and S £ Sy 
exeE 

(d) speed of segment T(S) is given by: 

T(S) = max{T(s)), s € 5; 

for Pi: 

(a) area of segment A(S) is given by: 

MS) = Y, A(n) and n € iV 

(b) heat of segment S (S) is given by: 

E(S) = £ H{n) and n,- € N 

(c) pins of segment B(S) are given by: 

B(S) = X] e*'  ea: SP3^8 n°des na and ny, na € 5 and nj, € 5V;  5j, € Pi,  and 5 ^ Sy 
tx€E 

(d) speed of segment T{S) is given by: 

T{S) = mox(T(n)), re € S and n € iV. 

In the case of multicomponent synthesis, performance attributes of level-1 partition segments are computed 
by carrying out a schedule and performance estimate step on each proposed segment. Physical attribute 
computation is shown below for the example in Figure 1. 
for Pa: 
A{$i) = A{nx) + Ato) = 18, A(s2) = A(n3) + A(n4) = 17, and A{s3) = A(n5) = 10 
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H{Sl) = H(ni) + E{n2) = 700, J7(s2) = E{n3) + E(n4) = 670, and #(53) = H{n5) = 380 
5(«i) = 73, B(s2) = 73, and B{s3) = 68 
T(«i) = Tnoar(r(ni),r(n2)) = roaz(100,100) = 100, 
T{s2) = max(r(n3),r(n4)) = max( 100,100) = 100, and 
T{sz) = mox(r(n5) j = 100 

for P2: 
A(5n) = o(mapi(«i)) = 0(^3) = 18, A(«i2) = a(mapi(s2)) = afc*) = 18, and 
A{siz) = a(mapi{s2)) = a(p2) = 10 
E{sn) = H(si) = 700, E(sl2) = E(s2) = 670, and H(sa) = #(53) = 380 
B(su) = 73, 5(5i2) = 73, and B(siz) = 68 
T(su) = max{T{si)) = 100, T(*i2) = max(T{s2)) = 100, and T(513) = moz(r(53)) = 100 

for P3: 
4(52i) = a(map2(^ii)) + a("*ap2(si2)) + a("iop2(si3)) = 20 + 20 + 12 = 52 
ff(«21) = J («11) + S(s12) + E{s13) = 1750 
B(s2l) = 75 
T(«2i) = max(T(s11),T{sl2),T(sl3)) = 100. 

Definition 2.8 formulates the hierarchical package design problem for an input graph G and a package set 
P. The hierarchical k-level package design problem is presented below as a constraint satisfying k-level 
partitioning problem (Definition 2.3) that is bound to packages from the package library. At each level, i 
in the package hierarchy, the binding generated by map.: has to be a package from the set of packages such 
that performance constraints are satisfied. Also, cost constraint on the entire design has to be satisfied. 

Definition 2.8 Given G = (N, £?), a package set P with defining size fc, and a cost constraint C, find a 
k-level partition V = {Pi, P2,...,Pit} of G and a binding of V to P such that 
for 1 < i < k, if 5 € P 

A(S) < a(mapi{S)), 
E(S) < h(mapi(S)), 
B{S) < b(mapi(S)), 
T{S) > t{mapi{S)). 

subject to 
k 

Cost{V) = ]T c(mapi(Pi));  Cost(V) < C. 
t=i 

A cost constraint of S 5500.00 yields a solution to the k-level partitioning problem, for our running example 
(Figure 1), with cost $ 5500.00 and the following characteristics of the binding (see Figure 2). 

for Pi: 

(A(si) = 18) < (a(roapi(*i)) = a(j*) = 18), {A(s2) = 17) < {a{maPl(s2)) = a(ps) = 18), and 
{A(s3) = 10) < (<x(mapi(s3)) = a(p2) = 10) 
[E{si) = 700) < (himap^sx)) = hfa) = 1000), (#(52) = 670) < (h(maPl(s2)) = Afo) = 1000), and 
{E{s3) = 380) < (Ä(mapi(«3)) = &(pj) = 400) 
(P(5l) = 73) < (6(mopi(s1)) = 6(ps) = 84), (P(s2) = 73) < {b(maPl{s2)) = 6(1*) = 84), and 
(B(s3) = 68) < (6(mop1(53)) = 6(p2) = 80) 
(T{sx) = 100) > (/(mop^)) = *(ps) = 50), (T(s2) = 100) > (timap^)) = tfo) = 50), and 
(T(*3) = 100) > (i(mop1(53)) = t(p2) = 50) ■ 

for P2: 
(A(«u) = 18) < (o(mop2(5n)) = a(p6) = 20), (A($12) = 18) < (a(map2(512)) = a(p6) = 20), and 
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N = {n1,n2, n3, IM, nS} 

P1=S = {s1,92,s3) 

91 = {n1, n2} 

*2 = {n3,n4} 

s3 = {n5) 

P2 = {311,512,313) 

«11 = {»1} 

s12 = {s2] 

*13 = {s3J 

P3 = {s21} 

s21 = i»11,s12,s13} 

S21-p8 

Figure 2: Example Solution 

(A{s13) = 10) < (a(map2(sl3)) = a(p5) = 12) 
(H($n) = 700) < (h(map2(sn)) = h(p6) = 1200), {E(sl2) = 670) < {h{map2{sl2)) = h(p6) = 1200), and 
(#(s13) = 380) < ih(map2(si3)) = h{p5) = 600) 
(B(s11) = 73) < (b(map2(sn)) = 6(p6) = 84), {B{sl2) = 73) < (b(map2(s12)) = 6(?6) = 84), and 
(B{s13) = 68) < (b(map2(s13)) = b(p5) = 80) 
(T(«n) = 100) > (*(ma?2(^:)) = *(Pe) = 75), (T(s12) = 100) > {t{map2{s12)) = t(p6) = 75), and 
(T(s13) = 100) > (t(map2(sl3)) = t(ps) = 50) 

for P3: 
(A(s21) = 52) < (c(map3(s2i)) = a(ps) = 60) 
(F(52i) = 1750) < (MmaP3(52i)) = h(ps) = 5000) 
(P(s21) = 75) < (bimapzlsn)) = 6(p8) = 84) 
(T(s2i) = 100) > (t(map3(s2l)) = i(p8) = 100) 

it 

Cost(V) = Y,c(™api(Pi)) = c{mapl{Pl)) + c{map2{P2)) + c(map3(P3)) = S 5500 

c(mapi(Pi)) = c(ps) + c(p3) + c{p2) = $ 3600 
c{map2(P2)) = c(p6) + c(p6) + c(p5) = $ 1500 
clmap^P^) = c(p8) = $400 

Cost of packaging Cost(P) is S 5500 and cost constraint C is S 5500. 
Tims, Cost{V) < C. 

3    Scheduling and Performance Estimation 

Scheduling and Performance Estimation are important steps in high level synthesis and are used to explore 
the design space [3, 27, 17, 18]. We briefly describe scheduling (see [35, 36, 37, 6] for more details) and 
performance estimation (see [11, 12, 13, 30, 21, 20, 19] for more details). 

Scheduling: Scheduling is the first important step in the synthesis process. The input behavioral speci- 
fication is converted into an equivalent data flow graph (DFG) representation. Scheduling operates on the 
DFG.  DFG operations are assigned to specific control steps and are bound to physical ALUs available in 
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the component library. The output of scheduling is a time-stamped and partially bound data flow graph, 
that satisfies user specified constraints. Scheduling determines execution speed of the synthesized design 
in terms of clock speed and number of clock cycles required to execute all operations. In addition, it fixes 
control and data path (ALU) architectures — the architecture impacts on performance of the design. An 
implementation of Paulin's force-directed list scheduling [35, 36], extended for communicating and con- 
currently executing processes [6], is used. Force-directed scheduling produces maximally fast (minimum 
number of control steps) schedules under resource constraints. Force-directed scheduling tries to maximize 
operation concurrency, ensuring high resource utilization. Hardware resources are shared across concurrent 
blocks. As a result, operations in concurrent blocks are scheduled under global resource constraints. All 
operations are treated as macro operations that execute in one logical control step. Operations such as '+', 
'-', and call etc. are treated alike. Logical control steps are expanded into equivalent physical clock steps 
during control generation [41]. All arithmetic, logical, and relational operations engage a single hardware 
resource. Subprograms, loop, and wait modules are assumed to engage all available resources. Hence, call 
operations do not share control steps with any other operation, i.e., no other operation is scheduled in the 
same control step as a call operation. 

Performance Estimation: For high performance packaging technology such as MCMS, power/heat dis- 
sipation in the design is very important. An accurate performance estimator for power/heat dissipation is 
needed to generate good designs. Many studies in power estimation for switch level and gate level circuits 
have assumed that average power dissipation is directly proportional to the average switching activity 
[32, 31, 15, 4, 45, 2, 42]. In CMOS designs, dynamic power consumption is predominant and is directly 
proportional to the aggregate (total) switching activity (ASA) in the circuit. ASA in the design is defined 
as the total number of circuit node switchings and is dependent upon the input patterns stimulating the 
circuit. The design is composed of components from a ceE library and a finite state controller implemented 
as a collection of PLAS. 

We use a profile-driven approach to switching activity estimation. In this approach, event activities related 
to various operations and carriers in the behavioral specification are measured by simulating the description 
using user-supplied inputs. A profiler is a tool that simulates the behavioral specification with user- 
supplied input patterns, called profiling stimuli. Before simulation begins, the profiler alters the behavioral 
specification by inserting probes (counters) to monitor event activity in various regions of the specification. 
At the end of simulation, the profiler prints the number of times each statement is executed, number of 
invocations of each function and similar data pertaining to the event activity that occurred in the behavioral 
specification during the simulation run. These event activities are then used during the synthesis process 
(during performance estimation) to estimate the switching activity in the design being synthesized. 

High level synthesis uses a library of parameterized register level module generators. Modules are pa- 
rameterized with respect to number of inputs where applicable and bit-width of each input. The library 
contains interface descriptions of each module, description of its parameters, and its area, delay and av- 
erage intrinsic switching activity (ISA) characteristics. Area, delay and ISA values of each library module 
are determined by actually generating layouts for several instances of the module with different parameter 
values. Determination of area and delay parameters for layout instances is straightforward. Area can be 
directly measured from the layout and delay can be determined through simulation or a timing analysis 
program such as Crystal [34]. We define the average intrinsic switching activity (ISA) of a module instance 
as the average number of circuit nodes that are expected to switch when an input event (change of logic 
values on the input lines) takes place. ISA of a module instance is determined by extracting a switch level 
model from its layout, simulating the switching level module using a very long stream of randomly gener- 
ated input patterns and counting the average number of circuit nodes switched per pattern. Simulation 
and counting continues untE convergence occurs. 

Overall switching activity estimation is based on using event activities to modulate the average intrinsic 
switching activities of library modules used in the synthesis process. This estimate is used to, in addition 

8 
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Figure 3: Thermal Profiling of RT level Components 

to area and dock-speed estimates, to guide the synthesis process. Experimental results for a number of 
examples show that switching activity estimated during synthesis deviates by less than 10% on the average 
from the actual switching activity measured after completing synthesis [20]. Area and delay estimation are 
based on the work of Jain [11], Kurdahi [21], Mlinar [30], and Dutta [6]. 

Thermal Profile of RT level components: For modern high performance packaging technology such 
as multichip modules (MCMS) heat dissipation in the design is a critical performance measure. For efficient 
utilization of such high performance packaging technologies, thermal constraints of packages need to be 
satisfied. To evaluate the feasibility of partitions, accurate power/heat dissipation figures of the register 
level components is required by the partitioning algorithms. Power/heat dissipation can be approximated 
by an estimation of switching activity in a design as average power dissipation in a circuit is directly 
proportional to the average switching activity. The switching activity estimation procedure consists of 
counting the switching activity of nodes in a circuit during a switch level simulation of layout/switch level 
models of the register transfer level components with a characteristic set of test vectors. A characteristic 
set of test vectors for each component is derived from the set of behavioral test vectors used by the designer 
to validate the behavioral specification prior to synthesis. 

Figure 3 demonstrates the technique of switching activity estimation. Partitions with single register level 
components are generated. Each register level component in the synthesized design is placed on a separate 
partition. Layouts and switch level models of these single component partitions are generated. The switch 
level models are simulated with switch level test benches (generated using a test bench compiler - TBC 
[49, 52]) and the number of nodes switching in the switch level model are counted. This count of node 
switches gives a very accurate measure of the power/heat dissipation in the register level component. This 
switching activity data is used by the partitioning algorithms to generate thermally sound partitions. 

This process of generating switching activity measures for all register level components in the RTL design 
is too time consuming. For example, a small traffic light controller example (TLC, see [19, 48] has 49 RTL 
components and gets synthesized to a 4769 transistor design. Five behavioral test vectors get translated 
into 1320 switch level test vectors (for each component). Complete layout generation, extraction of switch 
level models, conversion of behavioral test vectors into switch level test vectors, and switch level simulation 
together took about 48 hours. The layouts and switch level models of every RTL component needs to be 
generated individually and each of them has to be simulated at the switch level with a characteristic set 
of input vectors. A handful of test vectors at the behavioral level explode into thousands of switch level 
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vectors. Layout generation and switch level simulation (for all components) are too time consuming for 
this technique of switching activity estimation to be viable for large RTL designs. 

4    Hierarchical Partitioning and Package Design Algorithm 

The solution to the above problem takes the form of a hierarchical partitioning and package design algo- 
rithm that incorporates back-tracking while tightening cost constraints on the design with each succeeding 
refinement in the design. The algorithm takes the following inputs: (1) behavioral VHDL specification of 
a digital system viewed as a process graph composed of communicating and concurrently executing pro- 
cesses; alternately, an RTL netlist composed of register level components; (2) parameterized register level 
component library characterized for area, delay, and switching activity; (3) package library with area, pins, 
switching activity, clock speed, and cost information for all packages: (4) cost constraint C, in dollars on 
the entire design. The algorithm begins by partitioning the process graph and mapping partition seg- 
ments (after scheduling/performance estimation to obtain accurate performance attributes of the design) 
onto available bare-die packages; alternately, by partitioning the RTL netlist and mapping segments in the 
partition onto available bare-die packages. A graph is constructed from the generated partition at this 
level for further partitioning at the next higher level of packaging. The packaged partition segments form 
nodes in the new graph: edges of the graph are obtained from the interconnection of register level designs 
in the multicomponent design. At the next higher level of packaging, this new graph is partitioned and 
mapped onto packages. This process continues until the packaging hierarchy is exhausted and at each level, 
partition segments are mapped onto cost effective packages. If, at a particular level, no solution is found, 
we back-track to the previous level, tighten cost constraints, and construct a new partition and continue. 

The output of hierarchical partitioning and package design is: (1) a set of RTL designs (individual RTL 
designs that together form the multicomponent design); (2) a set of structures that realizes the hierarchical 
design; and (3) a binding of the RTL designs and structures to appropriate cost effective packages from the 
package library at each level of packaging. The design satisfies capacity constraints imposed by packages 
and the algorithm composes designs and picks packages such that overall cost constraint on the design is 
satisfied. 

Partitioning and package design at each level involves: (1) determining cost constraint and physical con- 
straints on the design — overall area and switching activity constraints on the design are derived from 
the minimum capacity package at the highest level in the package hierarchy (say, the minimum area and 
switching activity capacities of all available boards if the package hierarchy ended at board level); indi- 
vidual segment area, switching activity, clock speed, and pin constraints are derived from the capacity of 
available packages at a particular level of packaging; (2) constructing the partition subject to constraints 
and mapping onto a set of cost effective packages. At level-1 in the packaging hierarchy, in the case of mul- 
ticomponent synthesis, scheduling and performance estimation is carried out on each proposed partition 
segment and performance attributes of the segment are determined and feasibility of the multicomponent 
design and partition checked. At other levels in the packaging hierarchy, performance attributes of pro- 
posed partition segments are composed of its constituent parts and their packaging; (3) checking to see if 
constraints are satisfied and if we need to back-track or proceed to next higher level of packaging; and (4) 
construct netlist for next level and go to (1). At any level in the package hierarchy, the cost constraint is 
determined by deducting the cost of packaging partitions at lower packaging levels and the projected cost 
at higher packaging levels from the total cost constraint, C. 

Setting Constraints: Initially, on the first pass, overall constraints on area and switching activity con- 
straints on the entire design are derived from the minimum area and switching activity capacity of packages 
at the highest level in the package hierarchy (since, eventually, the design hierarchy needs to be mapped 
onto a package at the top level in the package hierarchy); the cost constraint is set by subtracting the 

10 
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Algorithm 4.1 (Set-Constraint) 

P: package set, C: overall cost constraint on design 
k: levels in package hierarchy, level: current level 
area: overall area constraint, cost: cost constraint at current package level 
CTF: constraint tighten factor (< 1), COF: cost overrun factor (< 1) 
pass: flag to generate physical constraints on design (initially 1) 

SeLConstraintQ 
begin 

if pass = 1 then    /* set physical constraints from package at level k in package hierarchy */ 
cost <— C — J2i=2 smallest package cost 
area *— min (area capacity of package at level k) 
switch <— min(switching activity capacity of package at level k) 
pass <— pass + 1       /* set flag to indicate physical constraints set */ 

elsif (status = SUCC) V (bJrack = FALSE) then 
cost«- C - T,Luvei+i smallest package cost - E'IT'"

1
 package cost 

elsif b.track = TÄÜZEthen 
cost.over.run *— costal — cost 
if cost.over.run < cosii„,e/_i then 

cost ■*— costievei-i — cost.over.run xCOF 
else 

cost <- costieve[-i x CTF 
end if 

end if 
end 

cost of the smallest packages at all levels of packaging above level-1. On subsequent invocations, if the 
algorithm is back-tracking, a cost overrun is computed; if the cost overrun is less than the cost of the 
previous level's packaging, cost constraint for the previous level (on a back-track) is set by subtracting a 
product of the cost overrun and a cost overrun factor (COF < 1) from the cost of the previous level's 
packaging; if the cost overrun is greater than the cost of the previous level's packaging, cost constraint 
for the previous level (on a back-track) is set by multiplying the cost of the previous level's packaging by 
a constraint tighten factor (CTF < 1). COF and CTF dictate the rate at which the cost constraint is 
tightened on a back-track. Typical values of COF are between 0.2-O.3 and CTF between 0.9-0.95 to enable 
effective search of the design space. If the algorithm is not back-tracking, cost constraint is generated by 
subtracting the actual cost of packaging at lower levels of packaging and the projected packaging cost at 
higher levels (cost of smallest packages) from the total cost constraint, C. 

Hierarchical Partitioning and Package Design (HPP): Algorithm 4.2 presents the hierarchical parti- 
tioning and package design algorithm (HPP). HPP has access to a hierarchical clustering based partitioning 
algorithm (HCP - Algorithm 4.3) and a multiway partitioning algorithm (MP - Algorithm 4.4). When parti- 
tioning at any level, HPP first determines cost, area, and switching activity constraints using Set-Constraint 
(Algorithm 4.1); HPP then invokes HCP to generate a partition and a binding of its partition segments to 
packages from the package library. HCP utilizes the underlying clustering in the design to quickly generate 
a partition. If HCP does not find a constraint satisfying solution, MP is invoked. MP explores a larger design 
space by constructing a class of partitions; MP returns the first partition that satisfies constraints, or, in 
the absence of a constraint satisfying solution, returns the best cost solution from the class of partitions. 
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Algorithm 4.2 (HPP Algorithm: HierPartPack) 

G: input graph (Behavioral specification/RTL netlist), P: package set 
C: overall cost constraint on design, EN: hierarchical netlist manager 
StatArrpc], BtkArrfk]: status of partitioning and number of back-tracks at each level 
MaxBtk: User specified limit on number of back-tracks at any level 
k: levels in package hierarchy, level: current level, area: overall area constraint 
switch: overall switch activity constraint, cost: cost constraint at current package level 

EierPartPack(G, P, C) 
begin 

level«— 1       Gtevel <— G       Solution *— null 
while level < k do 

Set-Constraint() 
(EcpStatus, HcpSolution) «— ECP(Gievei, P(level), cost, area, switch, level) 
if EcpStatus # SUCC then 

(status, Solution) <— MP(Gievel, P(level), cost, area, switch, level) 
end if 
if (status j£ SUCC) A (cost(HcpSolution) < cost(MpSolution)) then 

(status, Solution) *— (EcpStatus, EcpSolution) 
end if 
StatArrpc] <— status 
case status is 

SUCC: 
level *- level + 1 EN :: readjpartition (Solution) 
EN :: constructjnetlist(level)       /* construct netlist at next level */ 

BEST: 
if (StatArrflevel - 1] = SUCC) A (BtkArrpcJ < MaxBtk) then 

BtkArrfk] «- BtkArrfk] + 1 level *- level - 1      /* back-track */ 
else 

level *- level + 1 EN :: readjpartition (Solution) 
EN:: constructjnetlist (level) 

end if 
FAIL: 

if (StatArrpevel - 1] = SUCC) A (BtkArrfk] < MaxBtk) then 
BtkArrfk] *- BtkArrfk] + 1 level *- level - 1     /* back-track */ 

else       return fnulty       end if 
end case 
Guvei «— EN :: readjnetlist(level) /* retrieve next level netlist */ 

end while 
ret urn (Solution) 

end 

12 



106 
Both partitioning algorithms, HCP and MP, return a status along with a solution (partition with segments 
bound to packages). Status takes three values of SUCC, BEST, or FAIL to describe the cases where a 
constraint satisfying solution is found (a constraint satisfying partition with partition segments mapped 
onto packages from the package library), a solution is found (valid partition - a partition with segments 
mapped onto packages), or no solution is found (no valid partition - one or more partition segments cannot 
be mapped onto packages). 

Status is used to decide the execution flow of HPP. If the status of partitioning is SUCC, then HPP proceeds 
to the next higher level of packaging. A hierarchical netlist manager (HN) is used to generate a netlist, 
of the newly generated partition, for use at the next higher level. If, at a particular level, the status is 
BEST or FAIL, and: if the previous level partition's status is SUCC, HPP back-tracks to the previous level 
and generates a new partition with tighter cost constraints; if the previous level partition's status is BEST 
and the current level partition's status is BEST, HPP proceeds to the next higher level of packaging; if the 
previous level partition's status is BEST and the current level partition's status is FAIL, HPP terminates 
reporting failure to find a solution. HN is used to generate the netlist for partitioning. On a recursive 
back-track, back-tracking continues until we reach a level where the status of partitioning is BEST. When 
we encounter a status of BEST, we cannot do any better and the back-track stops, and the algorithm 
proceeds to the next higher level of packaging. 

Hierarchical Cluster-based partitioning (HCP): Hierarchical clustering is the partitioning technique 
[14]. Algorithm 4.3 describes HCP. A cluster tree for the input graph is constructed using the hierarchical 
clustering approach. The hierarchical clustering algorithm groups a set of objects according to some 
measure of closeness [14]. Two closest objects are clustered first and considered to be a single object for 
future clustering. Clustering continues by grouping two individual objects, or an object or cluster with 
another cluster on each iteration. The process stops when a single cluster is generated and a hierarchical 
cluster tree is formed. Alternate partitions are constructed by traversing this cluster tree and moving the 
cut-line [14, 25, 23, 24]. Figure 4 shows an example cluster tree and the different cut-lines and associated 
partitions. A map function maps partition segments to available packages in the package library. Partition 
segments and the entire partition are then checked for constraint satisfaction. A sum of package costs 
(for all partition segments) gives the cost of the partition. In the case of a constraint satisfying solution 
(performance and cost), the solution (partition) is returned to the hierarchical partitioning algorithm with 
status SUCC. In the case of a solution (valid partition with partition segments mapped onto packages) 
that does not satisfy constraints, a status BEST is returned. When no solution (no valid partition - one 
or more partition segments cannot be packaged) is found, a FAIL is returned. 

Multiway Partitioning Algorithm (MP): MP (Algorithm 4.4) is built on top of the Multiway Fiduccia- 
Mattheyses algorithm (MFM — Algorithm 4.5). MP first determines the minimum and maximum number 
of segments that feasible partitions can have (the partition is feasible, i.e., there may exist a partition such 
that partition segments can be effectively bound to packages from the package library). The minimum 
number of segments (minseg) is determined by; dividing the area constraint on the design by the area 
capacity of the largest package; dividing the switching activity constraint on the design by the switching 
activity capacity of the largest package; and picking the larger of the two. The maximum number of 
segments {maxseg) is determined as the number of nodes in the input graph (in the case of multicomponent 
synthesis, the number of processes in the input process graph; alternately, a user specified limit on the 
number of RTL components or the number of RTL components in the case of an RTL netlist). MP invokes MFM 
to generate partitions with number of segments varying from min_seg to maxjseg. MP returns with status 
SUCC if a constraint satisfying partition is found. When a constraint satisfying solution is not found, MP 
returns the best solution found with status BEST. In the case of no valid partitions (one or more partition 
segments cannot be packaged), MP returns FAIL. Algorithm 4.5 presents the modified MFM algorithm. 
MFM repeatedly calls a K-way Ficuccia-Mattheyses based partitioning algorithm (KWAY - Algorithm 4.6) 
to generate partitions. MFM keeps track of the best cost partition. MFM returns a constraint satisfying 
partition, if found, or the best cost partition, KWAY determines area, switching activity, clock speed, and 
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Algorithm 4.3 (HCP Algorithm) 

CD : depth of cluster tree, P : partition at current level in cluster tree 
S : segment in partition, p : package segment is mapped to 
level: level in the package hierarchy, cost: cost constraint on current package level 
area : overall area constraint, switch : overall switching constraint 

HCP(level, G, PackageLib, cost, area, switch) 
begin 

construct cluster tree (T) 
best-cost <— co       Solution <- null       status «— FAIL       CD *- depth(T) 
for treeJevel = 1 to CD do 

constraint-satisfied <— TRUE 
for each 5 6 P do        /* individual partition segment constraints */ 

if level = 1 then     /* pure behavior specification — estimate attributes */ 
Schedule/Performance Estimate S and generate A(S), H(S), B(S), and T(S) 

end if 
p *— PackageLib :: map(S)      /* get package segment S fits on */ 
if ((p jL null; A (A(S) < A(p)) A (E(S) < E(p)) A (B(S) < B(p)) A 

(T(S) > T(p)))    then        constraint-satisfied^- constraint^satisfied A TRUE 
else constraintjsatisfied«— FALSE end if 

end for 
if constraintjsatisfied — TRUE then     /* overall design constraints */ 

if ((cost(P) < cost) A (Area(P) < area) A (Switch(P) < switch)) then 
return (SUCC, P) 

elsif cost(P) < cost then 
Solution <- P       cost *- cost(P)       status <- BEST 

end if 
end if 

end for 
return (status, Solution) 

end 
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Figure 4: Example Cluster Tree and Partitions 

pin constraints from packages in the package library and using these constraints generates a partition and 
maps partition segments to packages. At the completion of KWAY, the algorithm returns a partition with 
segments bound to packages in the package library. 

k-way Fiduccia-Mattheyses Algorithm (KWAY): The k-way FM algorithm (KWAY — Algorithm 4.6) 
starts by creating a random initial partition of n partition segments. Nodes in the graph are randomly 
assigned to the n segments. Each segment gets some nodes from the set of vertices V of the graph G. The 
initial partition is saved in Best. Cost of this partition is saved as besLcost. k-way partitioning is carried 
out by repeatedly invoking two-way FM (two.way.fm) on pairs of partition segments, two.way.fm tries to 
improve bi-partitions by moving one node at a time from one partition segment to the other, taking care 
not to violate area and switching activity constraints. The two.way.fm algorithm is based on Fiduccia 
and Mattheyses's bi-partitioning algorithm [8]. two-way.fm is invoked until, either a user specified limit on 
number of total iterations is exceeded, or a user specified limit on number of iterations over which partition 
cost does not improve is exceeded. The best cost solution found during the iterations is returned as the 
k-way partition. 

Multicomponent Synthesis: Multicomponent synthesis is carried out when the input is a behavioral 
specification. HCP and MP algorithms carry out multicomponent synthesis at level-1 in the package hierar- 
chy. Multicomponent synthesis is carried out by synthesizing individual partition segments at level-1. De- 
sign tradeoffs are performed by considering various partitions and carrying out scheduling and performance 
estimation on proposed partition segments and determining performance attributes of the synthesized RTL 
designs and determining if they satisfy capacity and cost constraints imposed by available packages. Also, 
a global controller is automatically placed on a partition segment and interconnected with the RTL design 
segments. The global controller is placed on a partition segment whose package has the most space to fit 
the controller. HCP (Algorithm 4.3) considers different partitions by traversing the cluster tree — each 
level in the cluster tree represents a different partition (see Figure 4). At level-1, every time a new partition 
is considered — HCP carries out scheduling and performance estimation on each of the proposed partition 
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Algorithm 4.4 (Multiway Partitioning Algorithm: MP) 

G: input graph, P: package set, p: individual package from P 
area: overall area constraint, switch: overall switch activity constraint 
C: cost constraint on design, level: level in package hierarchy 

MP(G, P, C, area, switch, level) 
begin 

minseg <— max(area ~- max-area(p), switch 4- maxswitch(p)) 
maxseg <— num-cell(G)       /* number of nodes in graph */ 
best-cost -f— oc        status <— FAIL       Solution *— null 
for numseg = minseg to maxseg do 

(status, TempSolution) *— MFM(G, P, nurnseg, C, area, switch, level) 
if status = SUCC then 

return (status, TempSolution) 
elsif (status = BEST) A (cost(TempSolution) < besLcost) then 

Solution <— TempSolution besLcost <— cost (TempSolution) 
end if 

end for 
return (status, Solution) 

end 

segments (to compute performance attributes of the RTL design) and then tries to map these segments 
onto packages from the package library. Multicomponent synthesis in MP occurs in KWAY (Algorithm 4.6). 
At level-1 whenever a new partition is constructed, scheduling and performance estimation are carried out 
on individual partition segments. In Algorithm 4.6 a schedule/performance estimate step is carried out 
when the initial partition is generated and also every time a new partition is generated. By scheduling 
and performance estimation, we predict the performance characteristics of the individual synthesized RTL 
designs and also of the entire multicomponent design. 

At the end of multicomponent synthesis and hierarchical package design we have a multicomponent design 
composed of interacting RTL design segments — the multicomponent synthesis phase produces multiple 
behavior segments that are completely synthesized to RTL designs using a high level synthesis system such 
as DSS [40, 41]. Also produced is a hierarchical structural design (the leaf nodes in this design are the 
individual RTL designs) that is mapped onto efficient cost-effective packages from a package library. 

An Example: We illustrate the HPP algorithm (Algorithm 4.2) through an example. The graph in 
Figure 1 is partitioned onto the package set specified in Table 1 (to generate a hierarchical design that is 
mapped onto cost effective packages). Hierarchical partitioning and package design generates a package 
hierarchy in addition to a multichip design for the input specification. 

Let the user specified cost constraint, C, be S 5000. First the overall area and overall switching activity 
constraints are determined from the capacity of the smallest package at the highest package level (since, 
eventually, the design hierarchy will be mapped onto a package at the highest level in the package hierarchy) 
— the overall area and switching activity constraints are set from the area and switching activity capacities 
of p7 at level-3 which has an area capacity of 60 sq mm and switching activity capacity of 5000. The cost 
constraint on level-1 packaging is given by subtracting the projected packaging costs at levels 2 and 3 from 
C, i.e., by subtracting the cost of the smallest packages at each of these levels from C. The cost constraint 
on level-1 packaging is S 4550 (5000 - 200 - 250). Set-Constraint (Algorithm 4.1) is used to set the area 
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Algorithm 4.5 (Multiway Fiduccia-Mattheyses Algorithm: MFM) 

G: input graph, P: package set, C: cost constraint on design 
A: overall area constraint, S: overall switching activity constraint 
n: number of segments, level: level in package hierarchy 

check-constraint(S) 
begin 

status *- BEST       toLarea <— 0       totswitch «- 0       toLcost <— 0 
for all Si € S do /* segments in partition */ 

if map(si) = null then /* partition segment not mapped to package */ 
TetuTn(FAIL) 

end if 
toLarea <— tot-area 4- area(map(si)) 
tot-switch <— totswitch + switch(si) 
tot-cost <— tot-cost + cost(map(s{)) 

end for 
if (tot-area < A) A (tot-cost < C) then 

status *~ SUCC 
end if 
ret urn (status) 

end 

MFM(G, P, n, C, A, S, level) 
begin 

Best *- KWAY(G, P, n, level)       /* generate first partition */ 
num-fm-ite <— 1 num-fmJmp <— 1       status «— check-constraint(Best) 
while status ^ SUCC A num.fm.ue < MAX-FMJTE A num.fm.imp < MAX-FMJMP do 

S <— KWAY(G, P, n, level)    status *- check-constraint(S)    num.fm.ite <— num.fm.ite + 1 
best-cost *- cost(Best) 
if (status = SUCC) V ((status = BEST) A (cost(S) < besLcost)) then 

Best«— S 
end if 
if (cost(S) < besLcost) then    num.fm.imp *- 1 
else        num-fm-imp *- num.fm.irnp + 1       end if 

end while 
ret urn (status, Best) 

end 
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Algorithm 4.6 (k-way FM Algorithm: KWAY) 

G: graph G = (V,E), V is a set of vertices and E is a set of edges 
P: set of packages, S: {si, s?, ■ • •, sn} a partition of G with n segments 

KWAY(G, n, level) 
begin 

Best *— initializeQ /* create initial partitions */ 
if level = 1 then      /* pure behavior specification — estimate attributes */ 

for all 5 € Best do 
Schedule/Performance Estimate s and generate A(s), H(s), B(s), and T(s) 

end for 
end if 
best-cost <— 0       S *- null       conLpart <— TRUE       ite.cnt <— 1       imp.cnt *- 1 
for all 5 € Best do        /* map partition segment to package and find cost */ 

best-cost«— best.cost + cost(map(s)) 
end for 
while conLpart = TRUE do 

for i = 1 to n—1 do 
for j = i+1 to n do 

twojway.fm{si, Sj) 
end for 

end for 
if level = 1 then      /* pure behavior specification —  estimate attributes */ 

for all s € S do 
Schedule/Performance Estimate s and generate A(s), H(s), B($), and T(s) 

end for 
end if 
curr.cost *— 0 
for all s 6 S do        /* map partition segment to package and find cost */ 

curr.cost *— curr.cost + cost(map(s)) 
end for 
ite-cnt «— ite-cnt + 1 
if curr-cost < besLcost then 

imp-cnt *~ 1       Best«— S /* save best partition seen so far */ 
else    imp.cnt <— imp.cnt + 1    end if 
if ite-cnt = MAXJTE V imp.cnt = IMP.CNT then    conLpart«- FALSE   end if 

end while 
return (Best) /* retrieve best partition */ 

end 
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s2-p3 

s1-p3 

s3-p2 

Overall Cost Constraint = $ 5000 
Uvel-1 Cost Constraint = $ 4SS0 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Cost = $3600 
Actual Area = 46 sq. mm 
Actual Switch = 1750 

Figure 5: Level-1 Partition — First Pass 

and switching activity constraints on the entire design and the cost constraint for level-1. 

Having determined the cost, area, and switching activity constraints on the partition at level-1, the next 
step is to construct a partition. HPP invokes HCP to generate a partition and a binding of its partition 
segments to packages from the package library. If HCP does not find a constraint satisfying solution, MP 

is invoked. MP first determines the minimum and maximum number of segments (minseg and maxseg). 
Feasible partitions with 3, 4, and 5 segments can be generated for the design. Partitions with 1 and 2 
segments are not feasible because no package at level-1 has sufficient area or switching capacity. After 
determining the minimum and maximum number of segments in feasible partitions, MP invokes MFM to 
generate partitions with number of segments varying from min.seg to max-seg. MFM calls a k-way Fiduccia- 
Mattheyses based partitioning algorithm (KWAY- Algorithm 4.6) to generate partitions. MFM keeps track 
of the best cost partition and returns a constraint satisfying partition, if found, or the best cost partition. 

When HPP starts the process of hierarchical partitioning and package design (entering the while loop in 
Algorithm 4.2), it invokes MP with the input graph (in the case of multicomponent synthesis, a process 
graph; alternately, an RTL netlist), a set of packages available at level-1, a cost constraint (S 4550), an area 
constraint (60 sq mm), and a switching activity constraint (5000). Figure 5 illustrates this state and the 
level-1 partition. Partition segments are marked by dashed lines and the packages partition segments are 
mapped onto are indicated in text within the segments. A three segment partition with cost $ 3600, area 
46 sq mm, and switching activity 1750 is generated. This partition satisfies area, switching activity, and 
cost constraints and thus MP returns a SUCC status. HPP then uses the hierarchical netlist manager (HN) 

to read the generated partition and construct a netlist for partitioning at level-2. 

Following level-1 partitioning, Set-Constraint is invoked to set the cost constraint for the level-2 partition. 
HPP then invokes MP with the new netlist (generated from the level-1 partition), the set of packages available 
at level-2, a cost constraint (S 1200), and area and switching activity constraints (60 sq mm, 5000). Figure 6 
illustrates the level-2 partition. A three segment partition with cost S 1500, area 52 sq mm, and switching 
activity 1750 is generated. This partition satisfies the area and switching activity constraints, but violates 
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s12-p6 

Overall Cost Constraint r $ SOOO 
Lcvel-2 Cost Constraint = $ 1200 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Costs $1500 
Actual Area = 52 sq. mm 
Actual Switch = 1750 

Figure 6: Level-2 Partition — First Pass 

the cost constraint, thus MP returns a BEST status, HPP now back-tracks to level-1 and starts the second 
pass (a new pass starts every time we back-track to level-1). 

On the back-track HPP tightens the cost constraint using Set-Constraint. Assuming a cost overrun factor 
(COF) of 1, the new cost constraint for the level-1 partition is $ 3300 (as computed by Set-Constraint). 
HPP re-invokes MP on the RTL netlist (area and switching activity constraints stay the same and the set 
of packages available at level-1 stays the same). Figure 7 shows the new level-1 partition. A four segment 
partition with cost S 3300, area 48 sq mm, and switching activity 1750 is generated. This partition satisfies 
area, switching activity, and cost constraints and MP returns a SUCC status. HPP then generates a new 
netlist using HN for level-2. 

For the level-2 partition HPP invokes MP with the new netlist and a cost constraint of S 1500. Figure 8 
shows the second pass level-2 partition. A three segment partition with cost S 1500, area 52 sq mm, 
and switching activity 1750 is generated. MP returns a SUCC status as area, switching activity, and cost 
constraints are satisfied, HPP uses HN to generate a netlist for level-3. 

A cost constraint of $ 200, an area constraint of 60 sq mm, a switching activity constraint of 1750, and a pin 
constraint of 75 are considered for the level-3 partition. Figure 9 shows the second pass level-3 partition. 
A one segment partition with cost S 400, area 60 sq mm, and switching activity 1750 is generated. MP 
returns a BEST status as the cost constraint is not satisfied, HPP now back-tracks to level-2. 

At level-2 HPP invokes MP with a cost constraint of $ 1300 (as determined by Set-Constraint). Figure 10 
shows the second pass level-2 partition on a back-track. A three segment partition with cost S 1500 is 
generated. MP returns a BEST status as the cost constraint is not satisfied, HPP now back-tracks to level-1 
and begins the third pass. 

The third complete pass begins at level-1 with a cost constraint of S 3100. Figure 11 shows the third pass 
level-1 partition. A five segment partition with cost S 3000, area 50 sq mm, and switching activity 1750 is 
generated. MP returns a SUCC and HPP proceeds to level-2. 
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Overall Cost Constraint = $ 5000 
LeveW Cost Constraint = $ 3300 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Cost = $3300 
Actual Area s 48 sq. mm 
Actual Switch = 1750 

Figure 7: Level-1 Partition — Second Pass (Back-track) 

Overall Cost Constraint = $ 5000 
Level-2 Cost Constraint = $1500 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Cost = S1500 
Actual Area = 52 sq. mm 
Actual Switch = 1750 

Figure 8: Level-2 Partition — Second Pass 
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Overall Cost Constraint=$ 5000 
Level-3 Cost Constraint s S 200 
Area Constraint = 60 sq. mm 
Switch Constraint=5000 

Actual Cost = $400 
Actual Area r 60 sq. mm 
Actual Switch = 1750 

Figure 9: Level-3 Partition — Second Pass 

Overall Cost Constraint = $ 5000 
Levol-2 Cost Constraint = $ 1300 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Cost = $ 1500 
Actual Area = 52 sq. mm 
Actual Switch = 1750 

Figure 10: Level-2 Partition — Second Pass (Back-track) 
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Overall Cost Constraint = $ 5000 
Level-1 Cost Constraint = $ 3100 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Cost = $3000 
Actual Area = 50 sq. mm 
Actual Switch =1750 

Figure 11: Level-1 Partition — Third Pass 

HPP invokes MP with a cost constraint of S 1600 for the third pass level-2 partition. Figure 12 shows the 
third pass level-2 partition. A three segment partition with cost S 1500, area 52 sq mm, and switching 
activity 1750 is generated. MP returns a SUCC and HPP proceeds to level-3. 

At level-3 MP is invoked with a cost constraint of $ 500. Figure 13 shows the third pass level-3 partition. 
A one segment partition with cost $ 400, area 60 sq mm, and switching activity 1750 is generated. MP 
returns a SUCC. This exhausts the package hierarchy, since there is no level-4 in the package library. 

At this point HPP terminates the hierarchical partitioning process and returns the hierarchical design along 
with the generated package hierarchy (Figures 11,12, and 13). The input RTL design has been successfully 
mapped onto a hierarchy of packages and a constraint satisfying solution has been found. The overall cost 
constraint of S 5000 on the design has been satisfied by finding a solution with cost $ 4900. At each level 
in the package hierarchy, partition segments have been mapped onto available packages making sure that 
capacity constraints of the packages are satisfied. 

Discussion: In the above example, one of the cases we did not see in HPP is when a FAIL status is 
returned by MP. A FAIL status indicates that no valid partition for the design exists at this level (i.e., 
for all feasible partitions at least one of the partition segments could not be mapped onto a package at 
this level in the package hierarchy). At this point HPP checks if the status of the previous level's partition 
was a SUCC and, if it is, HPP back-tracks. SUCC at the previous level indicates that there is room for 
improvement at the previous level and hence the possibility of a valid solution at this level (as a result 
of improvement at the previous level). If the status of the previous level's partition is BEST, there is no 
room for improvement at the previous level and HPP terminates reporting failure to find a solution. 

Another case we did not observe is what happens when a BEST is returned (by MP) at level-1. When 
a BEST is also returned at level-2, HPP continues with the partitioning process up the hierarchy. No 
back-track is attempted because a status of BEST at level-1 indicates that the partition returned is the 
best cost solution found and cannot be improved. If a SUCC is returned at level-2, HPP could potentially 
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Level-2 Cost Constraint = $ 1600 
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Figure 12: Level-2 Partition — Third Pass 

Overall Cost Constraints S 5000 
Level-3 Cost Constraint = $ 500 
Area Constraint = 60 sq. mm 
Switch Constraint = 5000 

Actual Costs$400 
Actual Areas60 sq. mm 
Actual Switch = 1750 

Figure 13: Level-3 Partition — Third Pass 
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back-track to level-2 if level-3 returns a BEST or FAIL. If a FAIL is returned at level-2, HPP terminates the 
partitioning reporting failure to find a solution. However, in all cases, there is a possibility that an inferior 
solution at level-1 (a solution other than the best cost solution) could lead to a better overall solution. 
But due to the nature of costs in VLSI packaging, the highest costs are incurred primarily at level-1 and 
for some advanced high performance packaging technology such as MCMS at level-2, it is very unlikely that 
an inferior solution at level-1 could lead to an overall better solution. 

The user controls the amount of back-tracking by setting MaxBtk. Another way the user can control the 
amount of back-tracking is by setting initial cost constraint as zero. When the initial cost constraint is 
zero, MP is constrained to always look for the best cost solution (status BEST) at all levels in the package 
hierarchy. Typically, we find that the solution converges very quickly and we only back-track 2-3 times 
(see Section 5). 

5    Results 

We present results for a number of examples to demonstrate the validity of our approach for multicomponent 
synthesis and hierarchical package design. Details of the package library are shown in Table 2. Data about 
area, pin, switching activity, and clock speed constraints supported by each package and package cost are 
presented. We briefly describe the example behavioral specifications. Table 3 presents some details on the 
number of lines of code and number of processes for each of our examples. 

Move Machine: The Move Machine was suggested by Ivan Sutherland based on the observation that 
conventional processing units spend much of their time moving arguments from memory to CPU and 
moving results from CPU to memory. The instruction set of the Move Machine merely controls instruction 
and data flow; it does not compute any data values. Instead, certain memory locations are (assumed to 
be) connected to external computational units which perform the actual computations. Paul Drongowski 
provided an ISPS description of a Move Machine in [5]. The VHDL for this example was written by Jay Roy 
[48, 41]. The description consists of three VHDL processes (fetch, decode and execute) and several internal 
variables, signals and 'wait' statements. 

Fifo: A producer-consumer problem description written using three communicating processes (PRO- 
DUCER, CONSUMER, and FD70). It has five input ports (enqueue, dequeue, a, b, and c) and four 
output ports (data_ready, z, overflow, and underflow). All data signals and ports (a, b, c, and z) are four 
bits wide, and all controls (enqueue, dequeue, data_ready, overflow, and underflow) are one bit signals. 
When enqueue goes high, values in ports a and b are added and stored in the queue. When dequeue goes 
high, value in port c is subtracted from the topmost element in the queue and the result is output to z. 
The queue has a depth of 10. If more than 10 values are stored in the queue, overflow goes high. Similarly, 
an attempt to read a value from an empty queue results in underflow going high. 

Shuffle: The Shuffle is a high speed reconfigurable 32 bit shuffle-exchange network for parallel signal 
processing. The Shuffle exchange is a commercial product that Texas Instruments, Inc. (TI) used to 
manufacture (TI part SN74AS8839) [33]. The shuffle-exchange network has a four level architecture that 
supports five types of multiplexed data permutations: (1) forward shuffle; (2) inverse shuffle; (3) upper 
broadcast; (4) lower broadcast; and (5) bit exchange. A seven bit control word determines the type of 
permutation. Additional control is provided with a two bit output selector which determines if the output 
should be composed of: (1) all l's; (2) the lower 16 bits - result of 4-level shuffle and upper 16 bits - all 
l's; (3) the lower 16 bits - all l's and upper 16 bits - result of 4-level shuffle, and; (4) all 32 bits - result 
of 4-level shuffle. The shuffle exchange is modeled as a five process description — each of the four levels of 
shuffle and the output control are modeled as separate processes. 
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Level      Name Area (sq. mm) Pins Node Switches Speed (ns) Cost (S) 

1 Tinyl 5 40 50000 50 400 
1 Tiny2 5 40 60000 50 500 
1 Tiny3 8 40 80000 50 600 
1 Tiny4 12 40 120000 50 700 
1 Smalll 15 40 150000 50 800 
1 Small2 18 40 200000 50 900 
1 Small3 20 40 200000 50 1000 
1 PGA-1 12 84 200000 50 1200 
1 PGA-2 15 84 300000 50 1300 
1 PGA-3 18 84 400000 50 1400 
1 PGA-4 20 84 500000 50 1500 
1 PGA-5 20 84 800000 50 1600 
1 PGA-6 20 169 1000000 50 1800 
2 Pl-1 6 40 50000 50 250 
2 Pl-2 6 40 60000 50 300 
2 Pl-3 8 40 80000 50 350 
2 Pl-4 12 40 120000 50 400 
2 Pl-5 15 40 150000 50 450 
2 Cer-1 15 40 200000 50 500 
2 Cer-2 18 40 250000 50 550 
2 Cer-3 20 40 300000 50 600 
2 PGA-1C 12 84 220000 50 800 
2 PGA-2C 15 84 320000 50 900 
2 PGA-3C 18 84 450000 50 1000 
2 PGA-4C 20 84 850000 50 1200 
2 PGA-5C 20 169 1000000 50 1500 
2 MCM-1 200 169 1000000 75 10000 
2 MCM-2 300 169 2000000 75 15000 
2 MCM-3 400 169 3000000 75 20000 
3 Board-1 300 80 2000000 100 300 
3 Board-2 400 80 3000000 100 400 
3 Board-3 500 128 4000000 100 500 
3 Board-4 600 128 5000000 100 600 
3 Board-5 800 128 8000000 100 800 
3 Board-6 1000 128 12000000 100 1200 

Table 2: Package Alternatives 
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dynl-dynlO: dyn is a five process description that monitors and maintains the dynamic length and 
maximum length to which a queue in a producer-consumer problem grows, enqueue and dequeue are used 
to trigger computation of length and maxJength of the queue, dyn uses four processes to check for settling 
of values on enqueue, dequeue, length, and maxJength. The fifth process uses a procedure to compute 
length of the queue depending on enqueue or dequeue and then computes maxJength. dynl-dynlO are 
generated by making multiple instantiations (1-10) of the basic five process description of dyn. 

alul-aluS: alu is a nine process description of an arithmetic and logic unit (ALU). Eight processes carry 
out arithmetic and logical operations on a pair of 4 bit inputs. The ninth process uses a 3 bit function 
select to determine the appropriate function (which arithmetic or logical operation) result to be output. 
alul-alu5 are generated by making multiple instantiations (1-5) of the basic nine process description of 
alu. 

We first present results for hierarchical RTL partitioning and multicomponent synthesis and hierarchical 
package design separately, and then compare the results of the two approaches. Switching activity con- 
straints are not considered in hierarchical RTL partitioning and package design. 

Example Num Lines (VHDL) Num Proc 
MvMc 75 3 
Fifo 65 3 
Shuffle 472 5 
dynl 132 5 
dyn2 254 10 
dyn3 376 15 
dyn4 498 20 
dyn5 620 25 
dyn6 742 30 
dyn7 864 35 
dyn8 986 40 
dyn9 1108 45 
dynlO 1230 50 
alul 100 9 
alu2 188 18 
alu3 276 27 
alu4 364 36 
aluö 452 45 

Table 3: Design Data for Examples 

5.1    Hierarchical RTL Partitioning 

Table 4 presents experimental results for the hierarchical RTL partitioning approach for the above examples. 
Number of RTL components in the netlist, mapping of partition segments to packages from the package 
library, cost of the hierarchical partition (cost of packages partition segments are mapped onto) and cost 
constraint, and execution time for the designs are presented. 

We did not run the alu or dyn examples with more instantiations (larger example sizes) because execution 
times for RTL netlists of the larger examples shown in Table 4 are of the order of 30 hours. These examples 
show a very quick rise in execution times with increase in design sizes (in terms of RTL components in the 
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Example 
No. of 
Comps 

Segments and Mapping 
(■Si-Pi) Cost / Constraint Execution 

Time Level-1 Level-2 Level-3 
Mv Mc 53 *i-Tinyl 

S2-PGA-6 s12-PGA-5C 52i-Board-l 4250/5000 13.2 s 
alul 65 3i-Small3 sn-Cer-3 52i-Board-l 1900/2500 6.5 s 
Fifo 76 5i-Small2 •Sn-Cer-2 52i-Board-l 1750/3000 6.4 s 
dynl 128 «i-Smalll «ii-Pl-5 52i-Board-l 1550/2000 11.9 s 
alu2 123 5l-PGA-3 

52-PGA-4 
«U-PGA-3C 
«12-PGA-4C 52i-Board-l 5400/5000 49 min 36 s 

alu3 .;  161 5!-PGA-6 
«2-PGA-6 
53-PGA-6 
54-Tinyl 

3H-PGA-5C 
512-PGA-5C 
513-PGA-5C 

S14-P1-1 52i-Board-l 10850/8000 1 hr 44 min 
dyn2 234 si-Tinyl 

52-Tinyl 
53-PGA-4 
54-PGA-l 

«U-PGA-4C 
512-PGA-lC 

«13-P1-4 52i-Board-l 6200/3200 1 hr 49 min 
alu4 205 23 segments «ii-MCM-3 32i~Board-2 53600/15000 30 hr 31 min 
dyn3 334 21 segments «ii-MCM-3 $2i-Board-2 53000/3300 31 hr 28 min 

Table 4: Hierarchical Partitioning Results 

Note: s-p denotes the mapping of segment 5 onto package p from the package library. 

design). We did not folly observe the effect of back-tracking on these examples because of the rapidity 
with which the execution times increased. 

5.2    Multicomponent Synthesis and Hierarchical Package Design 

Tables 5, 6, and 7 present results of multicomponent synthesis and hierarchical package design for the design 
examples in Table 3 with the package library shown in Table 2. For each example Table 5 presents: (1) 
number of processes; (2) hierarchical partition segments mapped onto packages from the package library 
(at level-1, partitioning of processes (synthesized into equivalent RTL designs) into partition segments); 
(3) actual number of back-tracks by the hierarchical partitioning and package design algorithm and the 
limit on number of back-tracks (BTK); (4) actual cost of the design and the cost constraint; and (5) 
execution time. With a larger number of processes it is difficult to present assignment of processes to 
partition segments. Table 6 presents the number of processes on each level-1 partition (instead of presenting 
individual partitions). With an even larger number of processes, it is difficult to present even details of 
level-2 partition segments. Thus, Table 7 presents the following data for all designs in Table 3: (1) number 
of processes; (2) number of back-tracks/BTK; (3) actual cost/constraint; and (4) execution time. 

We have presented results on multicomponent synthesis and hierarchical package design and hierarchical 
RTL partitioning and package design. All these results establish and reinforce the validity of our approach. 
An interesting observation that vindicates our choice of the back-tracking algorithm is that in all our 
examples the most times we ever back-track is three, in the case of the alv.4 example (Table 7). This is 
because the algorithm back-tracks only if it can potentially find a solution with better cost and, also, the 
algorithm focuses in on a solution very rapidly. 
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Example 
No. of 
Procs 

Segments and Mapping 
(<s,-pi) 

Num 
BkTrk/ 

j_BTK 

Cost/ 
Constraint 

(S) 

Exec 
Time 

(s) Level-3 Levei-2 Level-1 . 

Mv Mc 3 52i-Board-1 5H-PGA-5C 5i-PGA-6 
EXE 

1/10 5600/5000 6 

512-PGA-1C 52-PGA-l 
FET,DEC 

Fifo 3 52i-Boaxd-l 51X-Pl-5 Si-Smalll 
FIFO 

PRODUCER 
CONSUMER 

0/10 1550/3000 2.7 

Shuffle 5 S2i~Board-2 SH-PGA-4C sx-PGA-4 
shuffle-1 

0/10 13900/12000 59.8 

S12-PGA-4C 52-PGA-4 
shuffle-2 

513-PGA-4C 53-PGA-4 
shuffle-3 

«14-PGA-4C 54-PGA-4 
shuffle-4 

515-PGA-4C S5-PGA-4 
output 

dynl 5 52i-Boaxd-l sn-Cer-3 5i-SmaJ13 
sl_p_l,sl_p_pt 
sl_p_sl,sl_p_2 

sl_p_st 

1/10 1900/2000 3.6 

alul 9 «21-Board-1 5U-Cer-2 51-PGA-l 
sl_nbp,sl_nap 
sl_np,sl_outp 

1/10 3100/2500 100.7 

52-Tinyl 
sl_mp,sl_ap 

sl_op 
s12-Pl-l 33-Tinyl 

sl_dp,sl_sp 
dyn2 10 S2i-Board-l 5ii-Cer-3 si-Small-1 

s2_p_sl,s2_p_pt 
s2_p_2 

2/10 3350/3200 212.7 

52-Tinyl 
s2_p_st,sl_p_st 

5i2~Pl-5 53-Smalll 
sl_p_sl,sl_p_pt 
sl_p_l,sl_p_2 

Table 5: Multicomponent Synthesis with Hierarchical Package Design Results 

Note: s-p denotes the mapping of segment s onto package p from the package library. Also, at level-1, 
mapping of processes to partition segments is presented. 
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Example 
No. of 
Procs 

Segments and Mapping 
{si-Pi) 

Num 
BkTrk/ 

BTK 

Cost/ 
Constraint 

(«) 

Exec 
Time 

(s) Level-3 Level-2 Level-1 

dyn3 15 52i-Board-l «n-Pl-3 Si-Tiny-3 
3 procs 

1/10 5000/5000 126.1 

512-P1-5 52-Smalll 
4 procs 

«13-P1-5 S3-Smalll 
4 procs 

5i4-Pl-5 34-Smalll 
4 procs 

alu2 18 52i-Board-1 5H-PGA-3C Si-PGA-3 
6 procs 

1/10 6700/5000 412.8 

«12-P1-5 52-Smalll 
5 procs 

S13-PGA-2C 33-Tinyl 
1 proc 

54-Tinyl 
3 procs 

s5-Tinyl 
2 procs 

514-P1-1 se-Tmyl 
1 proc 

dyn4 20 52i-Board-l 3H-P1-Ö •si-Smalll 
5 procs 

0/10 6350/8000 229.3 

512-PH 52-Tinyl 
1 proc 

si3-Cer-2 53-Small2 
6 procs 

514-Pl-3 <s4-Tray3 
3 procs 

«is-Pl-4 s5-Tiny4 
4 procs 

«is-Pl-1 56-Tinyl 
1 proc 

Table 6: Multicomponent Synthesis and Package Design Results (Contd ...) 

Note: s-p denotes the mapping of segment 5 onto package p from the package library.  Also, at level-1, 
number of processes on each partition segment are presented. 
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Example 
No. of 

Procs 
Num BkTrk/ 

BTK 
Cost/Constraint 

(S) 
Exec 

Time (s) 

Mv Mc 3 1/10 5600/5000 6 
Fifo 3 0/10 1550/3000 2.7 
Shuffle 5 0/10 13900/12000 59.8 
dynl 5 1/10 1900/2000 3.6 
alul 9 1/10 3100/2500 100.7 
dyn2 10 2/10 3350/3200 212.7 
dyn3 15 1/10 5000/5000 126.1 
alu2 18 1/10 6700/5000 412.8 
dyn4 20 0/10 6350/8000 229.3 
dyn5 25 0/10 8350/8000 349.5 
alu3 27 0/10 12700/8000 579 
dyn6 30 1/10 9850/9000 1470.7 
dyn7 35 2/10 11200/10000 3141 
alu4 36 3/10 14100/15000 1549.4 
dyn8 40 1/10 11850/12000 1863.5 
dyn9 45 1/10 13800/13000 3684.1 
alu5 45 2/10 17750/18000 1626.4 
dynlO 50 2/10 16850/15000 6452.2 

Table 7: Multicomponent Synthesis and Package Design Results (Contd ...) 

5.3 Multicomponent Synthesis vs Hierarchical RTL Partitioning 

Table 8 presents a comparison of multicomponent synthesis and hierarchical package design and hierarchical 
RTL partitioning. The following information is presented for each example: (1) number of processes in the 
behavioral description; (2) number of RTL components in a single-chip synthesized design; (3) number of 
back-tracks/limit on back-tracks, cost of packaging design, and execution time for (a) multicomponent 
synthesis and (b) RTL partitioning; and (4) dollar cost constraint for the design. For each example, the 
better dollar cost solution is bold-faced. RTL partitioning yields better designs for smaller examples where 
the number of synthesized RTL components is relatively small (< 200). For larger examples multicomponent 
synthesis clearly out-performs RTL partitioning in the quality of solutions. Also, the time taken by RTL 
partitioning is more than the time taken by multicomponent synthesis by an order of magnitude (two 
orders or magnitude for larger examples - e.g., alu4, dyn3). 

5.4 Functional Validation 

We have presented results on the performance of the multicomponent synthesis and hierarchical package 
design algorithm (HPP— Algorithm 4.2) for multicomponent synthesis with hierarchical package design 
and hierarchical RTL partitioning and package design for a number of examples. Another important step 
is to functionally validate the designs produced. The output of hierarchical partitioning and package 
design comprises: (1) in the case of multicomponent synthesis, a set of behaviors (VHDL) (corresponding to 
individual register level segments that together constitute the multicomponent design) to be synthesized 
into equivalent RTL designs using a high level synthesis system such as DSS [40, 41]; alternately, a set of 
RTL design segments in the case of RTL netlists; (2) a set of structures (VHDL) that realizes the hierarchical 
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Example 
Num 
Proc 

Num 
RTL 

Comp 

Multicomponent 
Synthesis 

Hierarchical 
RTL Partitioning 

Cost (S) 
Constr. 

Btk/ 
BTK 

Cost 
($) 

Exec 
Time (s) 

Btk/ 
BTK 

Cost 
(S) 

Exec 
Time (s) 

Mv Mc 3 53 1/10 5600 6 0/10 4250 13.2 5000 
Fifo 3 76 0/10 1550 2.7 0/10 1750 6.4 3000 
Shuffle 5 379 0/10 13900 59.8 - - - 12000 
dynl 5 128 1/10 1900 3.6 0/10 1550 11.9 2000 
alul 9 65 1/10 3100 100.7 0/10 1900 6.5 2500 
dyn2 10 234 2/10 3350 212.7 0/10 6200 6560 3200 
dyn3 15 334 1/10 5000 126.1 0/10 53000 113272 5000 
alu2 18 123 1/10 6700 412.8 0/10 5400 2976 5000 
dyn4 20 - 0/10 6350 229.3 - - - 8000 
dyn5 25 - 0/10 8350 349.5 - - - 8000 
alu3 27 161 0/10 12700 579 0/10 10850 6251 8000 
dyn6 30 - 1/10 9850 1470.7 - - - 9000 
dyn7 35 - 2/10 11200 3141 - - - 10000 
alu4 36 205 3/10 14100 1549.4 0/10 53600 109850 15000 
dyn8 40 - 1/10 11850 1863.5 - - - 12000 
dyn9 45 - 1/10 13800 3684.1 - - - 13000 
alu5 45 - 2/10 17750 1626.4 - - - 18000 
dynlO 50 - 2/10 16850 6452.2 - - - 15000 

Table 8: Multicomponent Synthesis vs Hierarchical RTL Partitioning 

multicomponent design; and (3) a binding of behaviors (RTL segments) and structures to appropriate 
packages from the package library at each level of the package and design hierarchy. From the viewpoint 
of functional validation (1) and (2) are of importance. The functional validation approach consists of: (1) 
synthesizing register level designs from the behavior segments using a high level synthesis system such as 
Dss(in the case of multicomponent synthesis); and (2) simulating the multicomponent design in VHDL using 
the same characteristic set of test vectors used for validating the behavioral specification (see Section 3 
— profiling stimuli). We have functionally validated the Move Machine, Fifo, and Shuffle examples by 
simulating the output multicomponent designs in VHDL (the other examples — alul-alulO, dynl-dynlO —■ 
are synthetic and are used for illustrating the capability of the multicomponent synthesis and hierarchical 
package design algorithm to handle large designs). In addition to functionally validating these designs 
at the VHDL level, we have validated the shuffle exchange example at the layout level by switch level 
simulation. We generated the layout of the hierarchical design using the Lager IV silicon compiler [22]. We 
extracted switch level models from the layouts and simulated the switch level model using IRSIM, a switch 
level simulator. 

6    Conclusions and Discussion 

We have presented a generic hierarchical partitioning and package design technique for multichip designs. It 
takes a generic graph specification (in the case of multicomponent synthesis, a process graph; alternately, an 
RTL netlist in the case of RTL partitioning), a set of available packaging options, an overall cost constraint on 
the design and generates a multichip design while simultaneously constructing a physical package hierarchy 
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for the design. We have demonstrated two applications of this generic technique for multichip design: (1) 
hierarchical RTL partitioning and (2) multicomponent synthesis with hierarchical package design. 

We have presented results for both approaches and also compared the performance of the approaches with 
respect to the quality of designs produced and execution times for a number of typical design examples, RTL 
partitioning and package design yields good results for examples where the number of RTL components in 
the synthesized design are less than 200. But RTL partitioning and package design does not handle thermal 
(switching activity) constraints on the design and cannot be used for designs where thermal considerations 
are important. When partitioning at the RTL netlist level, the design architecture is frozen (during high level 
synthesis). Alternate multichip designs cannot be explored during hierarchical RTL partitioning, whereas 
multicomponent synthesis explores the design space by considering alternate implementations during high 
level multicomponent synthesis. Also, thermal profiling of RTL designs is too time consuming (Section 3 
and is not viable for large designs. Multicomponent synthesis with hierarchical package design yields 
better results for the larger examples and also considers switching activity constraints on the design. Also, 
execution times for multicomponent synthesis are much lower than execution times for RTL partitioning for 
almost all our examples. Thus, multicomponent synthesis with hierarchical package design is the preferred 
approach for large designs and high performance packaging technology. 
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Abstract 

Tradeoff analysis is a central aspect of any design process. Languages and tools to support 
performance modeling and evaluation are necessary to facilitate rapid prototyping of designs. 
A performance modeling and tradeoff analysis environment reduces the overall design time 
of both the prototype and the final product, by helping designers in determining which pa- 
rameters of a design are critical for meeting a set of desired performance goals. This paper 
describes a case study in performance modeling using a language called PDL (Performance 
Modeling Language). The PDL system supports tradeoff analysis and performance visualiza- 
tion. This paper also addresses some of the key issues for successful tradeoff analysis during 
rapid prototyping and explain how many features of PDL make it a suitable choice for this 
purpose. 

1    Introduction 

During any design process, many decisions are made which affect the overall performance of 
the design. Many such decisions result from detailed tradeoff analysis among several related 
attributes of the design. For example, choice of the input clock frequency depends partly upon 
the desired upper bound on power consumption and the desired lower bound on the throughput 
rate. Decisions such as these are made at various levels of the design process from specification 
to implementation. In order to make effective design choices, the design environment and 
supporting tools must be well suited for performing tradeoff analysis throughout the design 
process, at multiple levels of abstraction. 

1This work was partially supported by the ARPA RASSP program and monitored by the Wright Lab, US-AF 
under contract number F33615-93-C-1316 and by the Semiconductor Research Corporation under contract number 
DJ-293. 
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Performance modeling and tradeoff analysis involves developing a model of the design at some 
level of abstraction, behavioral, macro-level, register-transfer level etc. During model eval- 
uation, various parameters of the model are altered and their effect on other parameters is 
observed. Based on this data further design choices are made. The model is modified accord- 
ingly, and the process of performance evaluation and tradeoff analysis repeated. This process 
continues until an acceptable design is reached which meets all the required performance goals. 

For effective tradeoff analysis to occur during rapid prototyping, the design environment should 
have the following features: (1) Modeling at any level of abstraction must be supported since 
tradeoff analysis occurs at various levels during the design process; (2) The modeling environ- 
ment must lend itself to reusability. Reuse of models is very critical because it reduces the 
time spent in writing a model for each new version of the design. (3) The performance evalu- 
ation engine should be flexible enough to partially evaluate a model when variations in some 
parameters are unknown. This facilitates incremental analysis of the model; (4) The modeling 
environment must be easy to use so that the development and analysis of performance models 
can be done quickly and efficiently. 

We have developed a modeling and tradeoff analysis environment, the PDL System, which 
meets all these criterion and is well suited for use during rapid prototyping [1]. A PDL 
program declares design objects (various kinds of modules, nets, and ports) that can appear 
in a design. In addition, the containment and connectivity relationships among the various 
kinds of objects can also be declared in the PDL program. When a specific design in the form 
of a PDL net-list file is compiled with a PDL program, the compiler will be able to determine 
if the net-list contains objects of the kind declared in the PDL program and whether the net- 
list structure conforms to the object composition relationships (containment and connectivity) 
which were declared in the PDL program. 

In addition, a PDL program declares various types of attributes and attaches them to the 
design objects. Attribute evaluation rules can also be specified and attached to the design 
objects. A PDL program does not specify any order among these rules; they are viewed as 
mathematical equations. Given a design net-list that conforms to the PDL program, the PDL 
compiler generates a global attribute dependency graph and automatically infers a complete 
evaluation order among the various attribute evaluation rules. An executable performance 
model containing the proper evaluation sequence for all the evaluation rules is generated. 

Figure 1 illustrates the PDL System and design process for generating and evaluating perfor- 
mance models. Once a model has been compiled, the evaluator can be configured to evaluate 
and collect data in several different ways. In the simplest case, a model can be completely eval- 
uated with a complete set of input data. A configuration can be specified that allows for the 
collection of data for graphical analysis or tabulation. This includes allowing the specification 
of ranges of values for particular input attributes. Incremental evaluation is also possible with 
a performance model (the feedback loop in the figure). During evaluation, only some of the 
input data is supplied with the result being another performance model. Further evaluation 
on this model can be done with more input data specified as necessary. 

This paper outlines the features of the PDL System and through a hardware/software co- 
design example illustrates how the PDL system can be used for effective tradeoff analysis 
during rapid prototyping. The rest of this paper is organized as follows: Section 2 introduces 
the hardware/software co-design example to be used as the case study in this paper. Section 
3 develops the PDL performance model of the co-design example and, through this example, 
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Figure 1: Overview of the PDL System 

introduces the PDL language itsel£ Section 4 describes the performance evaluation and trade- 
off analysis process using the PDL system. Section 5 discusses the results of this analysis for a 
specific co-design example: a JPEG-like image compression scheme. Section 6 contains some 
concluding remarks. 

2    Hardware/Software Co-design with Coprocessors 

Rapid prototyping for hardware-software co-design of embedded processor and coprocessor 
system is current research area. The specification for co-design is usually represented as a 
task graph where nodes represent tasks and edges represent communication channels [2]. For 
hardware-software co-design, the goal is to determine which tasks should be implemented in 
hardware or software based upon some performance criterion. When the target architecture 
is an embedded system, several hardware tasks can be implemented as ASICs and all of the 
software tasks are allocated to execute on an embedded processor. In a coprocessor system, 
only a single task can be allocated to hardware and all other tasks are allocated to software. 
Again all software tasks usually run on the same processor. A coprocessor is a configurable 
plug-in board connected to a main processor such as a workstation or a personal computer. 
Components of the coprocessor board include a programmable chip, interface memory, and a 
predefined interface protocol to the main computer [3]. 

While developing a performance model for co-design, several factors shall be considered. From 
a software perspective, tasks have certain properties that govern their execution sequence. If 
all tasks are bound to execute in software, then only one task can execute at a time. The 
next scheduled task can not begin execution until all preceding tasks are finished. Figure 2 
is an example of a task graph. Although there are tasks which appear to be independent of 
each other, an execution order is associated with this task graph since one task can execute 
at a time. For this example, task 6 can not begin executing until tasks 3,4, and 5 finish. This 
execution order is referred to as the the task schedule for a particular task graph. 

Another feature of hardware software co-designs is the inherent parallelism available between 
the hardware and software. This is achieved by having one hardware task executing in the 
coprocessor simultaneous with a software task executing in the main processor. Figure 3 shows 
a simple task graph were hardware software parallelism can be exploited. When none of the 
tasks are bound to hardware, the only task schedule is task 1 followed by task 2 and so forth. 
If task 2 where bound to hardware, then the task schedule could be pipelined so that task 2 
and 3 operate simultaneously. Pipelining can occur with a data buffer between task 2 and 3. 
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After task 2 finishes executing the first time, the data would move to the buffer at the input of 
task 3. Then, the next time task 2 executed, task 3 would also execute. The buffer is necessary 
to ensure task 2 can not write to the same memory being read by task 3 during execution. 

Software Hardware Software 

Time 
tl t2 6 t4 t5 t6 •■• 

1 X X X • •a 

Task No.   2 X X X • •• 
3 X X ■ -■ 

Table: Task Schedule 

Figure 3: Exploiting Parallelism in Task Graph 

If the target architecture is a coprocessor board, another modeling parameter is the com- 
munication time between tasks when one task is in software and the other is in hardware. 
The computer can not transmit data directly to the coprocessor. Instead, data is transmit- 
ted through memory located on the coprocessor board. Because this memory is located on a 
board which is connected to a slower bus interface, communication time necessary to read and 
write data from the coprocessor to the computer's main memory is slower than usual memory 
transfers within the computer. This will have a noticeable impact on estimating execution 
time of a particular set of bindings. In most co-design problems, the communication between 
the hardware is such that one task writes to the coprocessor memory prior to execution of the 
hardware task. Once the hardware task finishes, the next software task reads the results from 
the coprocessor memory. 

The expression for calculating the execution time of a task graph is based on a sum of the 
execution time for each task. However, with the hardware parallelism that can occur due 
to pipelining, it is not a simple summation of execution times. In addition, there is a task 
schedule that has to be specified to start and finish the pipeline. All of these factors must be 
expressed by the equations for calculating total execution time. 



133 

Calculating the execution time for an individual task is given by the equation: 

ExecutionTime — BindingTime + ^T RdOverHd + ]P WrOverHd (1) 

RdOverHd = NumVariaUes * ReadTime (2) 

WrOverHd = NumVariaUes * WriteTime (3) 

In this equation, BindingTime is the execution time for a particular task depending upon a 
hardware or software binding. As previously mentioned, tasks which must read or write to the 
coprocessor memory have an associated communication time related to transferring the data. 
Recall that a single task can have several edges which are input to the task. For each task on 
the input which transmits data via coprocessor memory, RdOverHd will be a non-zero value. 
If coprocessor memory is not involved, then RdOverHd will be zero for that particular input 
edge. Thus, the execution time includes adding all the time necessary for reading data from 
the coprocessor memory. A similar addition is used for writing to coprocessor memory for all 
the outputs and is accounted for by WrOverHd, 

Calculating total execution time is given by the equation: 

GlobalTime =       ^       max(taskl'ExecutionTime, task^ ExecutionTime,...)     (4) 
iaskl,task2,... 

GlobalTime is a sum of the execution times for each task. A particular task is scheduled and 
the execution time is ExecutionTime. Another task is scheduled and its execution time is 
added to the previous time. This process continues until all tasks have been scheduled with 
GlobalTime accumulating the execution times for each task. Because pipelining allows more 
than one task to execute at a time, the total global time only increases by the maximum 
ExecutionTime of all tasks which are scheduled to execute simultaneously. 

3    Performance Model for Co-designs 

In this section, we develop a suitable performance model in PDL for co-design performance 
estimation. PDL has three basic object types for representing designs: modules, carriers, and 
ports. A module can be used to represent any type of component typically found in a design. 
A carrier is commonly used for representing transport components such as connections, wires, 
buses and communication channels. Ports are objects used primarily for representing the 
connectivity among various design components. [4] 

In the co-design example, a task graph represents the overall design and nodes in the task 
graph represent tasks. Connections between tasks are considered directed edges with no two 
tasks having more than one directed edge between them. To represent a task graph in a PDL 
model, the first step is to define the various task graph components with PDL objects. Figure 
4 shows the PDL definitions for two ports and a carrier which collectively represent edges in 
a task graph. Two ports are defined such that there is a unique input and output port which 
represents a directed edge. 
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port task_out-port carrier edge 
end port; ports 

input: taskjout_port; 
port taskJn.port QUtput . taskJn_port. 
end port; end carrier; 

Figure 4: PDL declaration for representing edge and related ports 

In the carrier declaration edge there is a ports section. In PDL, various objects can contain 
references to other objects; this is known as containment. A carrier object may only contain 
ports. However, a module object may contain references to other modules, carriers, and ports. 
Containment serves two useful purposes. First, it allows the parent object, in this case the 
carrier, access to information within any contained object. Secondly, if two different PDL 
objects, perhaps two modules, contain a reference to the same port, then the two objects are 
considered connected to each other through that port. Figure 5 shows the PDL definition for 
a task module which represents tasks in the task graph and the codesign module which 
represents the entire task graph. 

module codesign module task 
ports ports 
inputs{} : task_out_port; inputs{} : taskJn_port; 
outputs{} : taskJn_port; outputs{} : task_out_port; 

carriers end module; 
connections {} : edge; 

modules 
tasks{} : task; 

end module; 

Figure 5: PDL declaration for representing task and codesign 

In the task module there are containment declarations for inputs and outputs. Within a 
task graph, a task may have any number of other task edges as input. Additionally, a task 
can also have output edges that branch to other tasks. In the declaration, the {} notation is 
used to denote a set of objects, with a set containing zero or more objects. Thus, for the task 
there will be a set of input and output edges. In a containment declaration, when the {} is 
not used, this means the reference is to a single object. 

Module codesign is used to represent the entire task graph. It contains a definition for a 
set inputs. These are all the inputs to the task graph (there may be more than one but is 
usually the root of the task graph). Another definition declares a set of outputs. These are 
all the outputs from the task graph which are usually the final tasks in the task graph to 
execute. In addition, there are definitions for connections which are all the edges in the task 
graph and tasks which are all the tasks in the graph. The codesign module represent all the 
containment relationships existing in a graph. 

Once all the objects representing components in the task graph have been specified, the next 
step for developing a model is to introduce attributes and attribute evaluation rules in the 
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objects. Attributes are parameters that are propagated and computed in the PDL model. An 
evaluation rule describes how to perform the calculation of an attribute in an object. Figure 6 
shows the declarations of the port and carrier objects with all their attributes and evaluation 
rules. 

type 
hw_sw_bind : enum {hw,sw}; 

end type; 

port task_out.port 
attributes 
primitive num.var : int; 
tl_bind : hw_swjbind; 
t2_bind : hw_sw_bind; 
wr_overhd : real; 
rdjoverhd : real; 
dynamic done, t2_job : int := 0; 

rules 
wr_overhd = 
wr_comm(tlJbind, t2_blnd, num_var); 

rd .overhd = 
rd_comm(tl_bind, t2_bind, num_var); 

end port; 

port taskJn_port 
attributes 
t2_bind : hw.sw_bind; 
rdjoverhd : real; 
dynamic done : int := 0; 
dynamic t2_job : int := 0; 

end port; 

carrier edge 
ports 
input : task_out_port; 
output : task_in.port; 

rules 
input't2J)ind = output't2_bind; 
input't2_job = output't2_job; 
output'rd_overhd = input'rd_overhd; 
output'done = input'done; 

end carrier; 

Figure 6: Attributes for edge carrier and related ports 

Attributes are defined in the attributes section of an object. An attribute can be any allowable 
data type. Some of the types available are integer, real, enumerated type, heterogeneous 
records, lists, and a variety of combinations of these. An attribute is associated with the 
object where it was declared and not with the object where the attribute is given a value or 
referenced. Thus, when an attribute is used in an expression where it is not defined within 
the object, it is referenced as object'attribute. For example, in the edge carrier there is a 
reference to input't2Jbind. The port input is declared as a contained port and within the 
port there is an attribute declaration for t2_bind. 

Along with defining the type, the attributes section is used to define an attribute as primitive 
or non-primitive. An attribute is non-primitive unless explicitly declared as a primitive. A 
primitive attribute is an attribute which will not have an evaluation rule for defining how 
to calculate it. Instead, a primitive attribute will have its value set by the user during the 
execution of the performance model. For example, in the task_out_port port the primitive 
attribute num_var is the number of variables being transmitted from one task to another. This 
value can not be calculated because it depends on the actual task graph being modeled and is 
not based on any information within the model. Thus, when the model is executed the user 
will supply the number of variables being transmitted. 

In addition to being primitive, an attribute can also be dynamic or static. An attribute is 
considered static unless declared dynamic. During model execution, all static attributes are 
calculated once. These are attributes which are not based upon some dynamic stream of 
events, but instead are values which need to be calculated once since they are independent of 
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other events occuring within the model. Conversely, dynamic attributes are not single values 
but streams of single values. As a model executes, it may be re-evaluated any number of times. 
During each re-evaluation cycle, there is a corresponding value for the dynamic attribute. For 
example, if there are 5 evaluation cycles, then every dynamic attribute will have 5 distinct 
values. This is similar to simulating the performance model based on a stream of events which 
occur. 

Along with defining attributes and types, evaluation rules also need to be defined for various 
attributes. It is not necessary that an attribute has an evaluation rule in the same object where 
it was declared. For instance, in the task_in_port, all the attributes are given values by the 
edge carrier object. Thus, the taskJLn_port port has no evaluation rule for these attributes. 
This is how information is transmitted among various objects in a PDL model. An attribute is 
declared for some object, but another object has an evaluation rule for the attribute. Another 
object can reference the value of the attribute after it has been evaluated. For example, in the 
edge carrier, the done attribute of output is given an evaluation rule where it is the same as 
input'done. Any other object which would contain the same input port could then read the 
value of done. 

Figure 7 shows the task module with all its corresponding attributes and evaluation rules. 
There are several evaluation rules which transfer information between the input and output 
of the task. These attributes are used for defining when a task has been scheduled and to 
determine the bindings of connected tasks. Recall that if a task is in hardware there is a 
communication overhead which must be calculated. Attribute comm_overlid will be 0.0 if 
the task is not bound to hardware otherwise it will be a total of rd_overhd and wr_overhd 
times which were calculated in the port using equations 2 and 3. The exectime attribute is 
either the hardware or software time for the task, and the time attribute is the sum of the 
execution time and communication time. This is the total execution time for the task when 
it is scheduled. Because every dynamic attribute is re-evaluated on each evaluation cycle, if a 
task has not been scheduled it does not add to the total time during that specific evaluation 
cycle. A new task is scheduled each evaluation cycle. 

The last definition is the code sign module. Figure 8 shows the definition with all the at- 
tributes and evaluation rules. In the rules section, there are several evaluation rules which set 
attributes in the contained object tasks. The {} indicates that attribute num_jobs in task 
is to be set to the primitive value num_jobs. The evaluation rule for global.time is similar 
to equation 4. There is an evaluation rule which sets the global.time in each task to the 
current global.time. Thus, after each task is scheduled and calculated, a new global.time 
is determined by taking the maximum of all the times from each task. 

All of these evaluation rules have been defined in the PDL model in no particular order. 
However, there is an inherent order associated that is implied by these rules. If a rule depends 
upon the value of another rule, then that rule can not be evaluated until the other rule is 
done first. These evaluation rule dependencies produce a global attribute dependency graph. 
Figure 9 illustrates just some of the dependencies among the various attributes in the task 
module. Primitive attributes do not depend upon other attributes and are the leaf nodes in 
the dependency graph (those attributes in the figure with boxes around them). A directed 
dependency graph may not contain any cycles among the attributes. 
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module task 
ports 
inputs{} : task_in_port; 
outputs{} : taskjout_port; 

attributes 
primitive binding : hwjswjoind; 
primitive hwtime : real; 
primitive swtime : real; 
primitive schdjio : int; 
primitive dynamic schd_task : int := 0; 
dynamic time : real := 0.0; 
dynamic job : int := 0; 
dynamic job_diff : int := 0; 
dynamic donein : int := 0; 
dynamic donejout : int := 0; 
dynamic exec:int := 0; 
dynamic globaljtime : real := 0.0; 
numjobs : int; 
rd_overhd : real; 
wrjoverhd : real; 
commjoverhd : real; 
exectime : real; 

rules 
inputs{}'t2_bind = binding; 
inputs {}'t2_job = curr job; 
outputs{}'tlJbind = binding; 
exectime = if (binding == hw) 
then hwtime 
else swtime 
endif; 

doneJn = 
eval(foreach p in inputs{ curr p'done }); 

jobjdiff = curr job - 
min(foreach p in outputs{ p't2.job }); 

rd_overhd = 
sum(foreach p in inputs{ p'rd_overhd }); 

wrjoverhd = 
sum(foreach p in outputs{ p'wr_overhd }); 

exec = 
begin 
temp:int; 
if ((doneJn == 1) and (curr job < num jobs) 

and (job_diff < 1)) 
then if (binding == hw) 
then temp:=l; 
else if (schd_no == schdJask) 

then temp:=l; 
else temp:=0; 
endif; 

endif; 
else temp:=0; 
endif; 
return temp; 

end; 
comm_overhd = if (binding == hw) 
then 0.0 
else wrjoverhd + rd_overhd 
endif; 

time = if (exec == 1) 
then globaLtime + exectime + commjoverhd 
else time 
endif; 

job = if (exec == 1) 
then job + 1 
else job 
endif; 

done_out = if (exec == 1) 
then 1 
else donejout 
endif; 

outputs {}'done = donejout; 
end module: 

Figure 7: Attributes for the task module 
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module codesign 
ports 
inputs {} : taskjout_port; 
outputs{} : taskin_port; 

carriers 
connections{} : edge; 

modules 
tasks {} : task; 

attributes 
primitive numjobs : int; 
primitive dynamic schdjask : int := 0; 
dynamic globaLtime : real := 0.0; 

rules 
tasks{}'niunjobs = num.jobs; 
tasks{}'schd_task = schd_task; 
globaLtime = 
max(foreach t in tasks{t'time}); 

tasks{}'globaljtime = curr global_time; 
end module; 

Figure 8: Attributes for the codesign module 

!ec   global.' time     commoverhd 

\ /   \ wr_bverhd   rd_overi 

|schd_task | 

Figure 9: Example Dependency Graph 

4    Tradeoff Analysis Using the PDL System 

Once a PDL model is written, the next step is to compile it. As mentioned previously, a PDL 
model by itself is not an executable model. An executable model is only generated when the 
PDL model is coupled with a specific design. This is the role of the compiler. It takes a PDL 
model and a design (a specific task graph in the case of our example) as input and generates 
an executable performance model. During the performance model generation, the order for 
evaluating all the various attributes is determined. The result of compilation is an executable 
performance model has a correct evaluation order for all expressions. Figure 10 is a detailed 
overview of the PDL system and the flow of a PDL program and net-list through an analysis 
cycle. 

Once a performance model has been generated, the user executes the model with the PDL 
evaluator. Model evaluation can be done in several ways depending upon the configuration 
and input to the evaluator tool. A performance model can be completely evaluated when all 

10 
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the primitive attribute values are supplied; this is known as full evaluation. Another option 
is to evaluate the performance model with only some of the primitive data specified. This is 
known as partial evaluation. In addition, the evaluator can be configured to collect data for 
analysis based on ranges of values for primitive attributes instead of single values. Finally, the 
evaluator can be linked into an existing CAD/CAE tool to perform data analysis. 

Full evaluation of a model begins with a performance model. All primitive attributes that 
were defined in the PDL model must be defined by the user in an input data file. When the 
evaluator is invoked, both the performance model and data file are read, and all expressions 
are evaluated with the results written to another performance model. Since the model was 
fully evaluated, all evaluation rules will have been replaced with their corresponding evaluation 
result. Thus, the resulting performance model will contain nothing but attributes and their 
evaluated values. 

In addition to full evaluation, the user can partially or incrementally evaluate a model. Instead 
of specifying a complete set of values for all primitive attributes, the user can specify only some 
of the data for the primitive attributes. When the evaluator is invoked, the performance model 
and data file are read, all evaluation rules are partially evaluated and a residual performance 
model is generated. The residual model model will still contain (partially evaluated) evaluation 
rules for various attributes which have been reduced and simplified with respect to the original 
expression. The residual model can be further evaluated when more primitive attribute data 
is available. 

There are several cases where partial evaluation can be useful during tradeoff analysis. During 
analysis, there may be some primitive attributes of interest that need analysis as to their effect 
on the designs performance. Evaluating a large model several times with primitive attributes 
which do not change between successive evaluations can be costly. The solution is to partially 
evaluate the performance model with only those primitive attributes which do not change. All 
evaluation rules are evaluated and whenever possible reduced to depend only on those primitive 
attributes which have not been specified. This results in a simpler performance model that 
can then be used in successive evaluations with the remaining primitive attributes specified. 

11 
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This results in the elimination of redundant evaluation of unchanging evaluation rules which 
helps to improve data collection. 

In addition to evaluating a model with single data points, the evaluator can be configured to 
collect data for ranges of primitive values. For example, instead of setting a primitive attribute 
to one particular value, the user can specify that a primitive attribute can be a range of values. 
Then during execution, the model is evaluated with the specified attribute set to each value 
in the range. Any number of primitive attributes can be setup to have ranges of values. In 
addition, the evaluator can be configured to collect data on any attribute attribute within 
the model, primitive or non-primitive. Two types of data collection is possible: Data can be 
collected in a format suitable for two or three dimensional plots, or the evaluator can collect 
data for any number of attributes and store the results in tabular form. 

In the case where a designer may need to collect data in a particular fashion not handled by 
the evaluator, the evaluator exists as a C run-time library. Contained in the library are several 
functions which together constitute a procedural interface to the evaluator. The user can use 
these functions to setup a performance model and collect data in a form suitable for their 
own needs. Thus, the library can be used to read a performance model, set values for various 
attributes, evaluate the model, restore the performance model to a previous state, and many 
other activities. 

5    Tradeoff Analysis for a Co design Example 

The co-design model written in PDL and discussed in Section 3 is flexible enough to perform 
performance modeling for many different types of task graphs. In addition, any number of tasks 
can be bound to hardware or software. In this section, we discuss results of using this model for 
a specific codesign example involving a JPEG-like compression/decompression scheme [5, 6]. 
The target architecture was a coprocessor system. Tradeoff analysis was performed with the 
PDL model to determine which task to implement in hardware. Figure 11 shows the task 
graph for the compression part of the JPEG algorithm in terms of objects in the PDL model. 
Arrows in the figure represent the connectivity among the various PDL objects. 
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Figure 11: Task Graph for JPEG 

First step in performing tradeoff analysis was estimating the hardware and software times for 
each task. Obtaining software time involved using existing software profiling tools to time each 
of the tasks in the software version of the JPEG algorithm. In this case, all software times 
were collected with timing functions on a Pentium system containing a P100 microprocessor, 

12 
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256 kilobytes of standard cache, and 16 megabytes of main memory. Estimating the hardware 
execution times was accomplished with a synthesis tool [7] that generated a register transfer 
level design for each task. In addition the synthesis tool estimated the execution times for each 
RTL design. Times were estimated for a 2 micron CMOS technology. Table 1 shows estimated 
hardware and measured software execution times for the various JPEG tasks. These times are 
for each task performing its respective job on 16 pixels at a time. 

Task Hardware Software 

DCT 8.4 ps 371.3 [is 
Quantization 0.6 fis 7.56 [is 

ZigZag OAps 1.63 fjs 
RLE and Huffman Encoding 884 ya 18.48 (is 

Table 1: Estimated Task Times 

There are several aspects of any task which affect its behavior in hardware or software. Tasks 
which are very mathematically intensive tend to have better performance in hardware than 
software because of hardware optimizations made by the the synthesis tool. However, task 
which contain many control and data flow statements are better suited for software because 
the synthesized control hardware is far more complex than its software counterpart. Execution 
times in table 1 illustrate these facts. The DCT (Discrete Cosine Transform) is almost entirely 
mathematical and as such performs better in hardware than software. However, Huffman 
encoding is a control oriented algorithm containing very few arithmetic operations. 

The next step in the analysis process was to use the PDL model to determine execution times 
for the task graph with each task bound to hardware. This was done by compiling the PDL 
program with the design for the JPEG task graph. Four data files were created as input to the 
evaluator with each file binding a single task to hardware. The model was setup to estimate 
execution time for an input file that contained 4080 pixels. In addition, all task schedules were 
defined for pipelining since the PDL model was written to account for it. Table 2 shows the 
results of evaluating the model with these four data files. 

Task in Hardware Execution Time 

DCT 0.234 s 
Quantization 1.51s 

ZigZag 1.54 s 
RLE and Huffman Encoding 4.07 s 

Table 2: PDL Results for Task Bindings 

Results of table 2 show that the DCT (Discrete Cosine Transform) task was the best choice for 
implementation on the coprocessor hardware. We did implement the DCT task in a coprocessor 
system [3] connected to a Pentium based PC. Once complete, actual execution times for 
compressing images of different sizes were measured. Accordingly, the PDL performance model 
was evaluated with primitive attributes set for each of the different input images. Table 3 shows 
the results of the PDL estimations compared with the coprocessor execution times. 

13 
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File Size 
(no. of pixels) 

PDL Estimated Time 
(seconds) 

Actual Time 
(seconds) 

% Error 

18,048 2.23 s 2.11 s 5.7 
25,920 3.09 s 3.02 s 2.3 
54,896 6.13 s 6.51s 5.8 
69,840 7.43 s 8.11s 8.3 
87,552 9.16 s 10.16 s 9.8 

Table 3: Comparison of Estimated to Actual Execution Times 

6    Conclusion 

We have presented a performance modeling and analysis approach for co-designs using the PDL 
system. In PDL, it is straight-forward to make several enhancements to the codesign model 
presented in this paper so that it requires less primitive input information or considers more 
performance parameters than just execution time. For example, the model could determine a 
task schedule based on the hardware software bindings, more detail could be included as to 
the target architecture, estimation could be incorporated for cost, hardware area, and so forth. 
As the design evolves and requires more detailed performance analysis, so too can the PDL 
model evolve and be refined to a more accurate representation of the system being modeled. 

It is important to note that the PDL model is a generic model from which specific, executable 
performance models can be generated (using the PDL compiler) given a specific task graph. 
Thus, the PDL model applies to any task graph which follows the object construction scheme 
specified in the PDL program. This is the essential difference between performance modeling 
in PDL versus a procedural hardware description language such as VHDL. More information 
on the PDL language and system, including the system software, can be obtained through the 
PDL home page on the WWW at http://www.ece.uc.edu/" ddel/pdl.html. 
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Performance Verification Using Partial Evaluation and Interval Analysis 

Abstract 

Performance models, usually written in high-level programming languages or high-level hardware 
description languages, make full use of high level procedural constructs such as the assignment 
statement, if-then, case, while control constructs and procedure calls. We propose a partial 
evaluation procedure to reduce procedural performance models into an equational form. We 
then propose an interval-analysis based method to formally determine whether the reduced per- 
formance model satisfies a set of relational constraints on the performance attributes. Together, 
the partial evaluation and interval analysis procedures constitute a powerful approach for formal 
performance verification. We illustrate this through examples, and describe both techniques in 
detail. Also included are results for an implementation of a symbolic partial evaluator of per- 
formance models and a performance verification tool based on the interval analysis technique. 
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1    Introduction 
System designs consist of a hierarchical collection of modules with ports connected by nets. 
Performance of a system is described by a collection of attributes attached to the various objects 
(modules, ports and nets) in the design. A performance model is an executable specification 
where some of these attributes are specified in terms of the other (computed) attributes. Usually, 
performance models are written in a hardware description language or a high-level programming 
language using the full power of the procedural programming constructs, such as the assignment 
statement, conditional and iterative statements and function calls, provided in these languages. 
In this paper, we refer to these models as procedural performance models. 

For example, Figure 1 shows a combinational logic design and Figure 2 shows a procedural perfor- 
mance model for computing CMOS dynamic power dissipation based on input signal probabilities 
[1]. It shows the primitive and the computed performance attributes. Attributes are attached to 
each entity in the design and are referenced using the notation ObjectName'AttributeName. In 
this example, all attributes are assumed to be real valued. This example is a procedural model 
due to the presence of function calls which in turn contain variable assignment statements inside 
while loops. 

_ckL 
_ .       n5 ; -x    n7 

n2f-4iL..) i L^'T" 
nl 

„3L 
)S2 h js4 .■—•— 

n4" —- '        n6 

Figure 1: Example Design Net List 

The performance verification problem is to determine whether a performance model can simulta- 
neously satisfy a set of relational constraints placed on the performance attributes. It is known 
that the performance verification problem is undecidable for procedural performance models 
[2, 3]. In this paper, we show how eqauational performance models can be verified using an 
interval based analysis technique. An equational performance model consists of equations, one 
for each computed attribute, in terms of other attributes using a predefined set of mathematical 
operators. An equational model does not contain any programming constructs such as function 
calls, conditional and iterative statements, and so forth. Furthermore, as will be discussed in 
Section 3, mathematical operators in the equations must be invertible in the sense that for each 
operation an inverse operation must exist. 

Although operators used in basic expressions in procedural performance models are usually in- 
vertible, there are many constructs that are not invertible. For example, variable assignment 
is non-invertible. Control constructs such as case and while statements and function calls are 
also non-invertible in the presence of the assignment statement. In some special cases a proce- 
dural performance model fragment may be invertible, but that it is invertible is quite hard to 
determine, requiring detailed mathematical analysis. 

The question is how to transform a procedural performance model to an equational model 
when sufficient, primitive attribute data is available. This paper also addresses this question 
and develops a partial evaluation [4, 5] technique to reduce procedural performance models 
to the equational form. Once reduced, these models can be subjected to formal performance 
verification using the interval analysis technique.  Figure 3 shows the process of performance 

1 
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Primitive Attributes 
ckt'systemJreq ckt'voltage 
gl'capacitance nl'prob 
g2'capacitance n2'prob 
g3'capacitance n3'prob 
g4'capacitance n4'prob 

Computed Attributes 
n5'prob = calcaiid_prob[(nl'prob, n2'prob]) 
n6'prob = calc.or-prob([n3'prob, n4'prob]) 
n7'prob = calc-and_prob([n5'prob, n6'prob]) 
118'prob = calc_or_prob([n6'prob, n7'prob]) 
gl'freq = min([n5'prob, 1.0 - n5'prob]) * ckt'systemJreq * 2.0 
gl'power = (ckt'voltage**2 * gl'capacitance * gl'freq) / 2.0 
g2'freq = min([n6'prob, 1.0 - n6'prob]) * ckt'systemJreq * 2.0 
g2'power = (ckt'voltage**2 * g2'capacitance * g2'freq) / 2.0 
g3'freq = min([n7'prob, 1.0 - n7'prob]) * ckt'systemJreq * 2.0 
g3'power = (ckt'voltage**2 * g3'capacitance * g3'freq) / 2.0 
g4'freq = min([n8'prob, 1.0 - n8'prob]) * ckt'systemJreq * 2.0 
g4'power = (ckt'voltage**2 * g4'capacitance * g4'freq) / 2.0 
ckt'power = gl'power + g2'power + g3'power + g4'power 

function min(vals[ ]) 
begin 

temp := vals[l] 
foreach v in vals 

{ if (temp > v) then 
temp := v } 

return temp 
end 

function calc_and_prob(vals[ ]) 
begin 

temp := 0 
foreach prob in vals 

{ temp := temp * prob } 
return temp 

end 

function calc.or.prob(vals [ ]) 
begin 

temp := 0 
foreach prob in vals 

{ temp := temp * (1.0 - prob) } 
return 1.0 - temp 

end 

Figure 2: Procedural Performance Model for Dynamic Power 
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Figure 3: Performance Evaluation and Verification 

Computed Attributes 
n5'prob = 0.25 
n6'prob = 0.75 
n7'prob = 0.1875 
n8'prob = 0.796875 
gl'freq = 0.5 * ckt'systemJreq 
gl'power = (ckt'voltage**2 * gl'capacitance * gl'freq) / 2.0 
g2'freq = 0.5 * ckt'system-freq 
g2'power = (ckt'voltage**2 * g2'capacitance * g2'freq) / 2.0 
g3'freq = 0.375 * ckt'systemJreq 
g3'power = (ckt'voltage**2 * g3'capacitance * g3'freq) / 2.0 
g4'freq = 0.40625 * ckt'systemJreq 
g4'power = (ckt'voltage**2 * g4'capacitance * g4'freq) / 2.0 
ckt'power = gl'power + g2'power + g3'power + g4'power 

Figure 4: Equational Performance Model for Dynamic Power 
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verification using partial evaluation followed "by interval analysis. 

For example, Figure 4 shows an equational model which is obtained by reducing the procedural 
model shown in Figure 2 after setting the all input signal probabilities to 0.5 (high and low 
signal values are equally likely) and partially evaluating the model. This equational model can 
now be subjected to formal performance verification based on the interval analysis technique. 

For example, the question as to whether 10.0 < gl'capacitance < 25.0, 5.0 < g2'capacitance < 
10.0, 5.0 < gZ'capacitance < 20.0, 8.0 < g4'capacitance < 15.0, 1.0 < ckt'voltage < 5.0, 
10.0 < ckt'system.freq < 30.0 implies 0.0 < mc'power < 12000 can be answered affirmatively, 
and the question as to whether 10.0 < gl'capacitance < 25.0, 5.0 < g2'capacitance < 10.0, 
5.0 < gZ'capacitance < 20.0, 8.0 < g4'capacitance < 15.0, 3.3 < ckt'voltage < 3.5, 30.0 < 
ckt'system.freq < 50.0 implies 0.0 < mc'power < 2000 can be answered negatively once the 
model is reduced to the equational form. Of course, the verification is valid only within the 
partial data with which the model was partially evaluated. This approach is analogous to the 
use of symbolic simulation followed by boolean tautology checking for verifying logic circuits [6]. 

The rest of this paper is organized as follows: Section 2 introduces a notation for writing proce- 
dural performance models and also describes a procedure for the partial evaluation of procedural 
performance models given partial primitive attribute data. Performance models written using 
this notation can be easily embedded into high level programming or hardware description lan- 
guages. Additionally, when sufficient primitive data is available, the reduced models can be 
rendered in the equational form. Section 3 describes our performance verification technique, 
based on interval mathematics, for equational models. Section 4 presents experimental results 
that show typical partial evaluation and verification times for some performance models. Section 
5 contains concluding remarks. 

2    Partial Evaluation of Procedural Performance Models 
Conceptually, a performance model is specified by augmenting a (possibly hierarchical) net-list 
with attributes and attribute evaluation rules [7, 8]. An attribute represents some design pa- 
rameter such as voltage, power consumption, time delay, and so forth. An attribute can be 
either primitive or computed. Primitive attributes are assigned a value by the user, whereas 
computed attributes are defined by an evaluation rule which assigns an expression to the at- 
tribute. Evaluation rules can use many different forms of expressions which will be described in 
the following paragraphs. For uniformity of presentation, we will assume that all attributes are 
real valued, although the partial evaluation and verification techniques presented in this paper 
are fully capable of handling integers and enumerated types including booleans and bits. 

Figure 5 shows an algorithm for partially evaluating a performance model. Aset is a set contain- 
ing all of the attributes in the model. Prior to partial evaluation, the evaluation order of all the 
attributes has to be determined. A computed attribute has an expression which defines how to 
calculate the value of the attribute. This expression typically depends upon the value of other 
attributes in the performance model. For example, if two rules were x = y + 5 and y = 5, the 
rule for x could not be evaluated until y has been. An attribute which depends upon no other 
attribute is given an evaluation order of 1. From there, each attribute expression is assigned an 
evaluation order equal to one plus the largest evaluation order of any attribute upon which it 
depends. In the previous example, y would have an order of one and x would have an order of 
two. 
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' EVALUATE-MODEL(Aet) 
begin 

Determine-Evaluation-Order(Aset) 
Tstep 4- 1 
while (Tstep is less than or equal to the largest evaluation order) 

Oset «- {All attributes in Aset with order equal to Tstep} 
for each A in öset 

£ <- Evaluation-Expression(A) 
£ ■*- PartialEval(£) 

end for 
'step *~ 'step  '    1 

end while 
end 

Figure 5: Partial Evaluation Algorithm 

Using the evaluation order, each attribute in the model is evaluated beginning with all attributes 
of order 1. The function PartialEval{) then performs the process where all known attributes 
values are replaced in each evaluation rule, and evaluation rules are reduced as much as possible. 
An attribute is considered known if it has a single real value. An attribute with an evaluation 
rule is considered unknown until the evaluation rule can be evaluated to a single value. 

The following sections describe in detail how to partially evaluate the various constructs. The 
constructs discussed in this section are available in virtually all high level procedural program- 
ming languages and hardware description languages. Performance models can be directly written 
using such languages, or alternatively, such performance models can be automatically extracted, 
given the design net-list, from generic performance models written in a performance modeling 
language such as PDL [7]. Instead of selecting an existing language, we use this general notation 
to emphasize that the partial evaluation technique described in this paper can be used in the 
context of performance models written in many existing languages. 

Mathematical Expressions : Every mathematical expression is parsed into an expression 
tree with nodes in the tree representing operations, real values, or references to other attributes. 
The evaluation process recursively traverses the tree replacing nodes with real values whenever 
possible. 

attr = unary-operator (Vi = PartialEval(expr) 
attr = (Vi = PartialEval(left-expr)) binary-operator (V2 = PartialEval(right-expr)) 

If-Then-Else Expressions or statements : As shown below, each part of the if-then-else 
expression is evaluated first. When the conditional expression is known, the entire if-then-else 
expression or statement can be replaced by either the true or false branch, depending upon the 
boolean value of the conditional statement. When the conditional does not evaluate to a known 
value, the only operations are replacement of all known values where possible. 

attr = if (Vi = PartialEval(conditional-expr)) then 
(V2 = PartialEval(true-expr)) 

else 
(V3 = PartialEval(false-expr)) 

endif 
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Case Expressions or statements : This is very similar to the the if-then-else expression 
or statement. All expressions within the case expression are evaluated. When both the switch 
expression and matching expression are known, the entire case statement can be replaced with 
the corresponding arm expression or statement. When this condition does not occur, only values 
for those attributes which are known can be replaced. 

attr = case (Vi = PartialEval(switch-expr)) of 
(Vj = PartialEval(match-expr)) : (V3 = PartialEval(arm-expr)) 
(V4 = PartialEval(match-expr)) : (V5 = PartialEval(arm-exprJ) 
(V6 = PartialEval(match-expr)) : (V7 = PartialEval(arm-expr)) 

others : (Vx = PartialEval(other-expr)) 
end case 

Foreach Expressions or statements : There are two different types of foreach expressions or 
statements. One type of foreach contains a loop variable that iterates over a range of values from 
one value to another value by a specified step size. When the left and right range expressions 
are known, the foreach expression or statement can be unrolled and replaced by copies of the 
foreach body with the loop variable replaced in each copy with the respective value. When 
either element of the range is unknown, only references to known attributes in the foreach body 
can replaced. 

attr = foreach var in (Vj = PartialEval(left-expr)) to 
(V2 = PartialEval(right-expr)) by (V3 = PartialEval(step-size)) 

{ (Vt = PartialEval(body-expr)) } 

The other type of foreach expression iterates over a list of variables, values, or combination of 
both. Partial evaluation here is similar to the other foreach expression or statement. 

attr = foreach var in iterate-list 
{ (Vi = PartialEval(body-expr)) } 

Begin-End Sections : The process for evaluating the begin-end expression begins by setting 
a temporary fail flag to false. Each variable declaration statement is evaluated along with the 
initial value if there is one. If any of the variable declaration statements evaluate to unknown, 
the fail flag is set to true. 

Then each programming statement in the begin-end expression is evaluated. If during the 
evaluation of a statement, the result is unknown, the fail flag is set to true. When a return 
statement is reached, several conditions are checked. First, the return expression is evaluated. 
If that value is known and the fail flag is still false, then the entire begin-end expression can 
be replaced by the residual return expression. However, if the fail flag is true, that means a 
previous statement did not completely evaluate so the begin-end expression can not be replaced. 

Function Calls : Function calls are the most complicated expression to evaluate. First, a 
copy of the function body (which is a begin-end expression) is made. Then variable declarations 
are added to the top of the copied function body. For each argument in the function argument 
list, a declaration is made for that variable and the initial value is set to the value being passed 
to the function. The following example illustrates this process: 

attr = min-val(objl'val, obj2'val) attr = begin 
function min.val(a, b) a := objl'val 
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begin b := obj2'val 

end end 

Once the function call is replaced, the begin-end expression is evaluated. The function call be- 
comes equational only if the residual return expression of the begin-end expression is equational. 

By specifying the appropriate partial primitive data for the performance model, all expressions 
and statements in the performance model can be reduced to an equational form during evalu- 
ation. In the case where all primitive data is supplied, the entire performance model becomes 
evaluated with every attribute having a single real value. This is full evaluation of the model 
and does not require verification. 

3    Verification of Performance Models 
Performance verification is the problem of determining whether a performance model can simul- 
taneously satisfy a set of relational constraints on the attributes. Interval mathematics [9,10,11] 
provides a convenient technique to represent relational constraints as intervals. The constraints 
are specified, the interval technique is applied, and a verification result is produced. This result 
is in the form of a statement that the constraints can be met ("yes"), or they cannot be met 
("no"). 

However, our approach is limited to performance models that contain only equations. That is, 
every evaluation rule is only composed of the mathematical operators such as +, -, *, /, xy, 
negation, exp(), and log(). 

Interval Notation: An interval is a tuple of the form [a, b] where a < b. It denotes the set 
of all values from a to b, both inclusive. A relational constraint on an attribute is represented 
by an interval. Figure 6 shows the interval notation for each type of relation that is possible 
on attribute X. A set of constraints can be imposed on a single attribute with the union of 
corresponding intervals. For example, the constraint X < 4 or X > 6 would be written as 
[-oo,4) U [6,oo]. 

With given a performance model, relational constraints can be placed on various attributes in the 
performance model. Relational constraints on primitive attributes state the assumptions about 
the permitted variance in the operating condition of the performance model and the relational 
constraints on the computed attributes state the desired performance goals. 

Initially, each attribute is assigned an initial interval. A computed attribute with an equation or 
a primitive attribute with no user-specified relational constraints has initial interval of [-00,00]. 

[c,c] X = c 
f-oo,c] X < c 
[coo] X > c 
[a,b] a < X < b 
(a,b] a < X < b 
[a,b) a < X < b 
(a,b) a<X<b 
[-oo,c) U (c,oo] X £ c 

Figure 6: Equivalent Relation and Interval 
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Figure 7: Example Expression Parse Tree 

Attributes that have a constant real value val are assigned an initial interval of [val,val]. Any- 
constant value appearing in an equation also has an initial interval of [val,val]. A user specified 
constraint placed on an attribute replaces the initial interval for the attribute. 

Algorithm for Interval Analysis: To make the explanation of the algorithm clearer, we 
assume that the attributes have only a single, real-valued interval constraint. A companion paper 
[12] describes how a variation of this technique can be used to incorporate multiple intervals 
(multiple relational constraints) for each attribute and integer intervals (including handling of 
enumerated range intervals). 

Before the analysis begins, each equation is parsed into an expression tree (parse tree). Internal 
nodes in the tree are mathematical operators with edges pointed to to either one or two child 
nodes depending on whether the operator is unary or binary. The leaves of the tree are either 
attribute names or constant values. Figure 7 is an expression tree for the equation x = a/b + 
c*d + 5. An expression parse tree for the entire performance model is generated in this fashion. 
The entire performance model is represented as a forest of expression trees. 

The interval analysis algorithm makes repeated use of two basic steps, a forward interval analysis 
step followed by a backward interval analysis step. In the forward direction, beginning with rules 
having an evaluation order of 1, each equation is evaluated using interval mathematics. Interval 
mathematics define how each operator behaves when calculating with intervals. Figure 8 shows 
each mathematical operator and how to determine a resulting interval. 

addition : [a,b] + [c,d] = [a+c, b+d] 
subtraction : [a,b] - [c,d] = [a-d, b-c] 
multiplication : [a,b] - [c,d] = [min(a*c, b*c, a*d, b*d), max(a*c, b*c, a*d, b*d)] 
division : [a,b] / [c,d] = {[a,b] / [c, 0)} U {[a,b] / (0, d]} when [c,d ] contains 
division : [a,b] / [c,d] = [a,b] * [1/d, 1/c] when [c,d ] does not contain zero 
minus : - [a,b] = [-b, -a] 
exp() : exp([a,b]) = [exp(a), exp(b)] 
log() = log([a,b]) = [log(a), log(b)] when a> 0 
log() : log(ia>bJ) = UNDEFINED when b < 0 
XY : [a,b]^c,d] = exp([c,d] * log([a,b])) when X>0 
union : [a,b] U [c,d] = [min(a,c), max(b,d)] 
intersection : [a,b] n [c,d] = [max(a,c), min(b,d)j 

Figure 8: Mathematical Operators on Intervals 



153 

[2,5]+ [14,18] = [16,23] 
,-[-100,100] 0 [I6,23]fl[-100,100] = [16,23] 

(JL)       .+)[-100,100] U)      A,.  [7,11]+ [7,7] = [14,18] 
[2,5]""        >-< [2,5]'    if > [14,18]fi[-100,100] = [14,18] 

; b)    if) (b)  ■ .7) 
[7,11]'        [7,7] [7,1 lT        [7,7] 

Before Forward Analysis After Forward Analysis 

Figure 9: Forward Interval Analysis Example 

[5,11] 

Q15,111 [5,11]-[-5,12] = [-7,16]    /$\   [5.11]-[-10.10] = [-5.21] 
,y ~\ r , ,91 [-10.10int-7.16] = [-7.10]- W V f-5'21^f-5'12! = ^12] 
(a)       C+^[-5,12] ■-■■   r^;+/v. 

[-10,10]    r\ vAv 
rfS   >7'> [-5,12] - [7.7] = [-12,5]  '5 W fe W2] " H">,40] = MM* 

[-40,40]     [7,7] [-12,5]0[-40,40] = [-12,5] [-45,32]/1[7,7] - [7,7] 

Before Backward Analysis After Backward Analysis 

Figure 10: Backward Interval Analysis Example 

Forward interval analysis of an equation begins by traversing the expression tree from the leaves 
to the root. The intervals at the leaf nodes are passed to their parent nodes. In the parent 
node, the appropriate operator is performed and a new interval is created. This new interval is 
intersected with the current interval at that node to produce the final result. This process is 
repeated until the interval at the root of the tree is revised. Figure 9 is a simple example that 
illustrates forward interval analysis on an expression parse tree. Forward (upward) propagation 
of intervals constitutes computing the parent intervals from the child intervals. 

Each equation with an evaluation order of 1 is evaluated in this manner. Next, the equations 
with evaluation order 2 are analyzed, and this process continues until all equations have been 
forward analyzed. If at any time an empty or an illegal interval is generated, all analysis stops. 
An illegal interval is an interval [a,b] where b < a. This "interval" has no values in it and is 
considered empty. Once an interval becomes empty, no further propagation can occur because 
intersection with an empty interval always produce an empty interval. 

The occurrence of an empty interval means that with the given performance model can not 
simultaneously satisfy all constraints. Thus, analysis stops and the result of verification is that 
the constraints cannot be met; that is the system of constraints can not be satisfied by the 
model. There is no possible assignment of values to the primitive attributes within the specified 
ranges that would meet the overall performance goals as stated. 

However, after all equations have been forwarded analyzed and no empty intervals were gener- 
ated, the next step is to do backward interval analysis. In backward analysis, the expression 



X = A + B 
X = A-B 
X = A*B 
X = AB 
X = -A 
X = log(A) 
X = exp(A) 
X = AB 
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A = X-B and B = X-A 
A = X+B and B = A-X 
A = XIB and B = X/A 
A = X*B and B = A/X 
A=-X 
A = exp(X) 
A = log(X) 
A = exp(log(X)/B) and B = log(X)/log(A) 

Figure 11: Inverse Calculations 

parse trees are used again. However, evaluation starts at the root and propagates intervals down 
the tree instead of up the tree as in forward analysis. For each node, a new interval value is 
calculated using the current interval values of the parent node and the sibling node. This new 
interval that is calculated is intersected with the current interval value at that node to obtain a 
new interval value for that node. 

To calculate a new interval for a node, the inverse of the operator at its parent node must 
be considered. For example, suppose there is an addition node with an interval X and two 
children with intervals A and B. In the forward propagation direction the expression would 
be X = A + B. However, in backward propagation, a new interval is calculated for A using 
A = X — B and a new interval for B is calculated as B = X — A. Each node has the computed 
interval intersected with its current interval, and the algorithm traverses the expression tree 
until leaf nodes are reached. Figure 10 shows an example of backward analysis for the same 
expression tree in Figure 9. 

Every mathematical operator in the expression trees must have an inverse operator for backward 
analysis to work correctly. (This, in fact, necessitates the restriction that this technique is 
applicable to invertible equational performance models only.) Figure 11 shows the inverses for 
each operator where X is the interval of the current node, A is the interval of the left child and 
B is the interval for the right child. 

Backward analysis continues as long as an empty interval is not produced and until all equations 
have been backward analyzed. When an empty interval is produced, all analysis stops and the 
result is that the performance model is unsatisfiable with the given set of constraints. Otherwise, 
forward and backward propagation are repeated until no further interval changes occur. If this 
happens, the constraints are satisfiable (ie. there exists a set of values which when applied to 
the model will produce a solution in the desired range). 

Figure 12 is the algorithm for the entire verification process with forward and backward analysis. 
Nset is the set of all nodes in the expression trees for all expressions in the performance model. 
Note that the algorithm will always produce a result of either satisfied or unsatisfied. In the 
case that that an empty interval is generated during iteration, the algorithm ceases and returns 
a status of unsatisfied. When this does not happen, the outer while loop continues to iterate 
until no node interval changes during a forward and backward iteration. In theory, it is possible 
that this may never happen. However, due to the computer's finite precision, there will always 
be an iteration where no change occurs. In practice, this limit on the precision is small enough 
that it does not affect the results in a practical performance modeling situation. 
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VERIFY -MODEL (Ket) 
begin 

Determine -Evaluation-Order {Nset) 
Done <- false 
while(jDone is false) 

Done«- true 
Tstep *- 1 / *   Forward Propogation* / 
while(7^tep is less than or equal to the largest evaluation order) 

Oset«- {All nodes in Nset with order equal to Tstep} 
for each ßf in öset 

X <r- GetJnterval(N) 
Ztemp <- Per form JntervaljOperation(Af) 
■i-new ^"" X 11 -Ltemp 

if (Inew is empty) then 
return Unsatisfied 

end if 
if (I not equal to Xneu,) then 

Replace Jnterval{N', Xnew) 
Done «— false 

end if 
end for 
Tstep *~ Tstep +   1 

end while 
Tstep <- largest evaluation order / *  Backward Propogation* / 
while(7^ep  >0) 

Oset «- {All attributes in Afset with order equal to Tstep) 
for each M in Oset 

X «- GetJnterval(N) 
Xh f- GetJLeft.ChildJnterval{N) 
XR «- Get-Right-Child Jnterval{N) 
ZtempR <- Per form JnverseJnterval.Operation(l,Xt) 
ZtempL <~ Per form JnverseJntervaLOperation(X,lR) 
XnewR <!—XC\ XtempR 

. -LnewL 4- X n -LtempL 
\f{lnewL or XnewR is empty) then 

return Unsatisfied 
end if 
if (2L not equal to 2„eioi,) then 

Replace-LeftJnterval(N', XnewL) 
Done «— false 

end if 
if (1R not equal to Inemfl) then 

Replace-Right Jnterval (Af, XnewR) 
Done <- /aZse 

end if 
end for 
tstep *     I step        ■*■ 

end while 
end while 
return Statisfied 

end 

Figure 12: Verification Algorithm 

10 
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Constraints 
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0] ckt'systemJreq : [10.0,30.0] 
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,12000.0] 
g3'capacitance : [5.0, 20.0] ckt'voltage : [1.0,5.0] 

Results Constraints were satisfiable 
ckt'power : [63.125,11660.2] gl'power : [25,4687.5] g3'power : [9.375,2812.5] 

g2'power : [12.5,1875] g4'power : [16.25,2285.16] 

Figure 13: First Verification Configuration 

Constraints 
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0] ckt'system_£req : [30.0,50.0] 
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,2000.0] 
g3'capacitance : [5.0, 20.0] ckt'voltage : [3.3,3.5] 

Results        Constraints were not satisfiable 
ckt'power : [ ] gl'power : [816.75,3828.13] g3'power : [306.281,2296.88] 

g2'power : [408.375,1531.25] g4'power : [530.888,1866.21] 

Figure 14: Second Verification Configuration 

4    Implementation and Results 
The partial evaluator and the interval-analysis based performance verification tool are imple- 
mented in C++ on Sun Sparc platforms. In the first subsection below, we show the interval 
constraints and results produced by verification of the reduced equational performance model 
shown in Figure 4. Three different verification exercises for this model are presented to describe 
how the verifier can be used. The second section shows evaluation and verification times for two 
different performance models for large design net-lists. 

4.1    Verification of the Performance Model for Power 

A constraint configuration or simply configuration specifies the relational constraints to be placed 
on the attributes of a performance model. Figure 13 is one configuration for the primitive at- 
tributes in the performance model. Additionally, we constrain ckt'power to answer the question: 
with the given primitive attribute constraints, can the power constraint be satisfied? 

The equational model and configuration are given as input to the verifier and two results are 
produced. First, the verifier specifies whether or not all the constraints were satisfied. In 
addition, it also lists all the attributes and their last calculated interval values when analysis 
finished. For the configuration in Figure 13, the constraints were satisfiable. Only the intervals 
that were different from the original configuration are shown here. Notice that the interval for 
ckt'power has changed from the interval originally specified. 

Figure 14 is another configuration with slightly different constraints. In this case, the verifier 
shows that the the constraints were not satisfiable. Again, only those intervals which are different 
from the original specification are shown. 

A final configuration for the performance model uses a union of intervals for several attributes. 
Figure 15 shows the intervals separated by commas. A list of intervals separated by commas is 
equivalent to the union of the those intervals. This configuration was shown to be satisfiable 

11 
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Constraints 
gl'capacitance : [10.0, 25.0] g4'capacitance : [8.0, 15.0], [3.0,3.5] ckt'system-freq : [80.0, 90.0],[30.0,50.0] 
g2'capacitance : [5.0, 10.0] ckt'power : [0.0,2000.0] 
g3'capacitance : [5.0, 20.0] ckt'voltage : [3.3,3.3], [3.0,3.0] 

Results Constraints were satisfiable 
gl'power : [675,2812.5]                        gl'capacitance : [10,25]                     ckt'power: [1704.37,2000] 
g2'power : [337.5,1125]                        g2'capacitance : [5,10]                       ckt'voltage : [3,3] 
g3'power : [253.125,1687.5]                 g3'capacitance : [5,20]                       ckt'systemJreq : [30,50] 
g4'power : [438.75,1371.09]                 g4'capacitance : [8,15] 

Figure 15: Third Verification Configuration 

by the verifier. This time, those attributes which have a union of intervals are shown with the 
interval that was used during evaluation to produce that satisfiable result. 

4.2    Execution Times 

We now present results of partial evaluation and verification times for larger performance models. 
The first performance model was written to calculate the throughput time of combinatorial 
circuits, given the delay times of each of the gates. A program was written that generated 12 
different large combinatorial circuits containing from 1 to 12,286 net-list objects (an object being 
a single module, port, or net). Using PDL, a performance model for calculating throughput rate 
was generated for each of the 12 net-lists. 

Next, each net-list was partially evaluated, after setting the data arrival time at input ports to 
'0 ns', to produce an equational model. This model was then verified with a set of constraints 
that is satisfiable. The same net-list was again verified with a set of constraints that is not 
satisfiable. 

Times for partial evaluation and verification were measured on a Sun SPARCstation 20 contain- 
ing 256 megabytes of memory. Figure 16 is a plot of all the times for the 12 different net-lists. 
With this model, it is clear that net-lists with fewer than 1000 objects took an insignificant 
amount of time to evaluate and verify. However, as the net-list size increased, the verification 
time increased significantly for the satisfiable constraint set. However, unsatisfiable constraints 
were verified with a negative in a short amount of time, even for large net-lists. 

As a second example, a model for calculating dynamic power in CMOS logic circuits was used for 
14 different logic circuits. Net-lists ranged in size from 1 to 49,150 objects. Again, each net-list 
was partially evaluated to produce an equational model, then verified with a set of satisfiable 
constraints and a set of unsatisfiable constraints. Figure 17 shows the plot of the times for 
the various net-lists. In this example, verification of the satisfiable constraints was faster than 
evaluation and verification with unsatisfiable constraints. 

5    Conclusion 
This paper presented a partial evaluation technique to simplify procedural performance models 
and render them in an equational form in which they can be subjected to formal verification using 
interval analysis. This process is similar to the use of symbolic or trajectory evaluation followed 
by boolean tautology checking for formal verification of logic circuits [13, 6].   Experimental 

12 
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results show that both the partial evaluation and interval analysis based verification techniques 
are quite fast even for net-lists contain several thousands of design objects. 

We are currently investigating techniques for more closely integrating partial evaluation and 
interval propagation and for partially evaluating and verifying models that contain dynamic 
performance attributes that assume streams of values. 
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APPENDIX J: 
Hierarchical Behavioral Partitioning for Multicomponent Synthesis 

Affiliation: EURO-DAC Categories: 2.1, 4.5 and 2.8 

Abstract 
Packaging technology has tremendously improved 

over the last decade. Various packaging options such 
as ASICs, MCMs, boards, etc. should be well explored 
at early stages of the system-synthesis cycle. In this 
paper we present a hierarchical behavioral partitioning 
algorithm which partitions the input behavioral speci- 
fication into a hierarchical structure and binds all ele- 
ments of the structure to appropriate packages from 
a given package library. As an application to our 
partitioner, we integrated the partiiioner with a high 
level synthesis tool to create an environment for mul- 
ticomponent synthesis and hierarchical package design. 
We provide detailed partitioning algorithms and exper- 
imental results. 

1    Introduction 
High level synthesis converts a behavioral specifica- 

tion of a digital system into an equivalent RTL design 
(composed of a data path and a finite state controller; 
the data path is a composition of components selected 
from a register-level component library) that meets a 
set of stated performance constraints [1, 2, 3]. This 
RTL design can be partitioned into multiple segments 
to realize a multichip design. Partitioning RTL de- 
signs, however, has various drawbacks: (1) Control 
lines could be crossing segment boundaries; (2) Op- 
erators could be shared by operands in different seg- 
ments, this results in poor performance due to inter- 
chip communication; (3) The design is fixed during 
synthesis and thus there is very little scope for cir- 
cuit transformations to improve performance; (4) RTL 
designs are much larger than their behavioral counter- 
parts, thus,' the solution space increases rapidly with 
the size of the synthesized behavior, making the par- 
titioning process very time consuming; and (5) Power 
estimation/measurement for RTL designs is too time 
consuming and not viable for very large designs. 

Recent efforts in system-level synthesis have led to 
the development of high level synthesis systems that 
can produce multichip digital systems [4, 5, 6]. These 
systems, however, do not consider the impact of pack- 
aging on high level synthesis and hence designs pro- 
duced by these systems cannot efficiently use avail- 
able high performance packaging technology. For very 
large, performance critical designs, an efficient hier- 
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Figure 1: Hierarchical Behavioral Partitioning 

archical behavioral partitioner, which fully explores 
various packaging options, is required to tackle the 
drawbacks of RTL partitioning. The inputs to the Hi- 
erarchical behavioral partitioner are: (1) a behavioral 
specification to partition; (2) parameterized register 
level component library characterized for area, delay, 
and switching activity; (3) package library with area, 
pins, switching activity, clock speed, and cost infor- 
mation for all packages; and (4) cost constraint C, in 
dollars on the entire design. The output of the parti- 
tioner is: (1) a set of behavioral specifications, which 
together form the original specification; (2) a set of 
structures that realizes the hierarchical design; and 
(3) a binding of the behavioral specifications and the 
structures to appropriate cost effective packages from 
the package library. 

The input behavioral specification (which may be 
given in VHDL) consists of a set of communicating and 
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concurrently executing processes. This specification is 
internally represented as a process graph; with nodes 
in this graph representing concurrently executing pro- 
cesses, and edges being communication channels Fig- 
ure 1 shows a process graph and its hierarchical par- 
tition. All multiple-process segments in the figure 
marked Part-i are behavioral specifications themselves 
and can be synthesized into register level designs. All 
these register level designs together with the global 
controller form the multicomponent design. The hi- 
erarchical design mapped onto packages shown in the 
board design forms a package hierarchy for the de- 
sign. We formulate the hierarchical partitioning prob- 
lem and and propose a solution for the hierarchical 
partitioning and package binding problem. We show 
how our partitioner can be integrated with a high 
level synthesis tool to create an environment for mul- 
ticomponent synthesis and hierarchical package bind- 
ing. Experimental results for a number of designs are 
presented. 

2    Problem Formulation 
Definitions 2.1 and 2.2 introduce the concept of a 

hierarchical k-level partition of a set. Definition 2.3 
extends our notion of a k-level partition of a set to a 
k-level partition of a graph G = (N, E) (which in our 
case is a process graph), where JV is the set of nodes 
and E is the set of edges. 

Definition 2.1 A 1-level partition of a set X is a col- 
.lection, S, of nonempty sets (called segments), such 
that 
• S is a collection of mutually disjoint sets, i.e., 

if C € S, D € S, and C # D, then C D D - <i>, and 
• the union of S is the whole set H', i.e., (J,6<s s = .V.Ü 

Definition 2.2 A k-level partition, V, of a set .'V is a 
set of 1-level partitions Pi, P2,..., Pi such that 
• for 1<£ < k, P,+i is a 1-level partition of Pi, and 
• Pi is a 1-level partition of jV. Q 

Definition 2.3 A k-level partition of a graph G = 
(N, E) is a k-level partition of N, where N is the set 
of nodes and E is the set of edges. Q 

The performance attributes of the nodes in the 
graph G and level 1 partition segments (each segment 
is viewed as a sub-graph of G or a subset of processes 
in the behavioral specification) in the graph are de- 
termined through scheduling and performance estima- 
tion of individual nodes or segments [12, 13, 15]. Thus 
for any segment, s £ Pi, the performance attributes 
A(s), H(s), T(s), and B(s) (area, switching activ- 
ity, clock period and pin count respectively) are com- 
puted by the performance estimator built into the par- 
titioning environment. This process is similar to the 

scheduling and performance estimation steps in high 
level synthesis [12, 15]. 

We have a set of packages pi, pi, pz ■ ■ .pn in a pack- 
age library C. Each package p has six attributes: A(p), 
the area capacity; H(p), the maximum switching ac- 
tivity; T(p), period of the fastest clock allowed by the 
package; B(p), the number of pins available in p; C(p), 
the dollar cost of p; and L(p) > 1 is the level number 
of the package p. Level of a package is the level in the 
packaging hierarchy at which the package can be used. 
All bare-die packages are level one, ASICs and MCMs 
are level two, boards are level three, and so on. The 
defining level of a library is the smallest h such that 
no package in the library has level greater than k. For 
i > 1, packages with level i can contain only packages 
with level:' — 1 and level 1 packages contain the nodes 
and segments of the process graph. The hierarchical 
partitioner assigns a package p £ C to each partition 
segment in Pi, P>,.. .P* € V. All packages can be in- 
stanced multiple times, that is, two different segments 
can be assigned the same package type. AU segments 
in Pi, called the level i segments, can be assigned only 
to a package of level i. If p and q are two package 
instances then, p < q denotes 'p contains q'. 

Definition 2 A For any instance, p, of a package from 
the package library C: 

If 2 < L(p) < k: 

(a) area cost of the package a(p) = )P a(q) 
?<1 

(b) heat cost of the package h(p) = £j h(q) 
p<i 

(c) pin cost of the package b(p) = 

y   e, e spans package instances pa and pj; such that: 

<€£   (L(Pa) = L(Pb) = L(p) - 1) A (p -C Pa) A (p * pb) 

(d) clock period cost i(p) = maxp<q(t(q)) 

When L(p) = 1, the scheduler and performance es- 
timator will determine the above costs based on the 
level 1 segment in p. E 

Hierarchical Partitioning Problem: Given a 
process graph, G = {N,E), a package library £ with 
defining size k, and a cost constraint C: 
• find a (k-l)-level partition V = {Pi,P2, ...,Pi_i} 
ofG 
• Let P-g = {si}; where, st = {s<.—i | Sfc-i € Pt-i} 
that is, Pi contains exactly one segment (which in turn 
contains all the segments in Pk-i) to be mapped to a 
top most level package in the library. 
• Now find a binding, B, which for 1 < : < k. binds 
each segment in Pi to some level i package instance 
from £, such that 



162 

for each instance, p, of anv package from C: 

«00 < MP), 
KP) < B(P), 
*(P) < B(p), 
t(S)>T(p). 

subject to 

Cost{V)=     YL    Ctä  Cost(P)<C. a 
instance p 

3    The   Behavior   Level   Hierarchical 
Partitioning Algorithm 

The algorithm begins by partitioning the process 
graph and mapping partition segments onto available 
bare-die packages. A graph is constructed from the 
partition generated at this level for further partition- 
ing at the next higher level of packaging. The pack- 
aged partition segments form nodes in the new graph; 
edges of the current graph which connect nodes in dif- 
ferent segments, form the edges of the new graph. At 
the next higher level of packaging, this new graph is 
partitioned and mapped onto packages. This process 
continues until the packaging hierarchy is exhausted 
and at each level, partition segments are mapped onto 
cost effective packages. If, at a particular level, no 
solution is found, we back-track to the previous level, 
tighten cost constraints, and construct a new parti- 
tion and continue. Various steps in the algorithm are 
explained below. 

Setting Constraints: Initially, on the first pass, 
overall area and switching activity constraints for the 
entire design are set to the minimum area and switch- 
ing activity capacity of packages at the highest level 
in the package hierarchy (since, eventually, the design 
hierarchy needs to be mapped onto a package at the 
topmost level in the package hierarchy). The cost con- 
straint is set by subtracting the cost of the smallest 
package at all levels of packaging above level 1 from 
the total cost constraint, C. On subsequent invoca- 
tions, if the algorithm is back-tracking, a cost overrun 
is computed. If the cost overrun is less than the cost of 
the previous level's packaging, cost constraint for the 
previous level (on a back-track) is set by subtracting 
the product of cost overrun and a cost overran fac- 
tor (COF < 1) from the cost of the previous level's 
packaging. On the other hand, if the cost overrun is 
greater than the cost of the previous level's packaging, 
cost constraint for the previous level (on a back-track) 
is set by multiplying the cost of the previous level's 
packaging by a constraint tighten factor (CTF < 1). 
COF and CTF dictate the rate at which the cost con- 
straint is tightened on a back-track. Typical values of 
COF are between 0.2-0.3 and CTF between 0.9-0.95 
to enable effective search of the design space. If the 
algorithm is not back-tracking, cost constraint is gen- 

erated by subtracting the actual cost of packaging at 
lower levels of packaging and the projected packaging 
cost at higher levels (cost of smallest packages) from 
the total cost constraint, C. 

Hierarchical Partitioning and Package De- 
sign (HPP): Algorithm 3.1 presents the hierarchi- 
cal partitioning and package design algorithm (HPP). 
HPP has access to a multiway partitioning algorithm 
(MP - Algorithm 3.2). When partitioning at any level, 
HPP first determines cost, area, and switching activity 
constraints using Set.Constraint and then MP is in- 
voked. MP explores the design space by constructing 
a set of alternative partitions; MP returns the first par- 
tition that satisfies constraints, or, in the absence of 
a constraint satisfying solution, returns the best cost 
solution from the set of partitions. 

MP returns a status flag along with a solution (par- 
tition with segments bound to packages). Status takes 
three values of SUCC, BEST, or FAIL to describe the 
cases where a constraint satisfying solution is found (a 
constraint satisfying partition with partition segments 
mapped onto packages from the package library), a 
solution is found (valid partition - a partition with 
segments mapped onto packages, but does not satisfy 
constraints), or no solution is found (no valid partition 
- one or more partition segments cannot be mapped 
onto packages). Based on the values of the status flag 
for the current and previous levels, HPP decides to 
proceed to the next higher level, back-track to previ- 
ous level or terminate reporting failure. A hierarchi- 
cal netlist manager (HN) is used to generate a netlist, 
of the newly generated partition, for use at the next 
higher level. 

Multiway Partitioning Algorithm (MP): MP 
(Algorithm 3.2) is built on top of a K-way extension 
of the Fiduccia-Mattheyses algorithm (KWAY - Algo- 
rithm 3.3) [11, 14]. MP first determines the minimum 
and maximum number of segments that feasible par- 
titions can have and invokes the KWAY algorithm to 
generate partitions in the feasible range. MP returns 
with status SUCC if a constraint satisfying partition 
is found. When a constraint satisfying solution is not 
found, MP returns the best solution found with status 
BEST. In the case of no valid partitions (one or more 
partition segments cannot be packaged), MP returns 
FAIL. 

K:way FM Algorithm.(KWAY): Our k-way ex- 
tension of the FM algorithm (KWAY — Algorithm 3.3) 
starts by creating a random initial partition of k 
segments, k-way partitioning is carried out by re- 
peatedly invoking two-way FM (two.way.fm) on pairs 
of partition segments. two.way.fm tries to im- 
prove bi-partitions by moving one node at a time 
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Algorithm 3.1 (HPP Algorithm: HierPartPack) 
G: input graph (Behavioral specification) 
P: package set 
C: overall cost constraint on design 
HN: hierarchical netlist manager 
StatArr[k], BtkArrfkJ: status of partitioning and num- 
ber of back-tracks at each level 
MaxBtk: User specified limit on number of back-tracks 
at any level 
k: levels in package hierarchy, level: current level 
area: overall area constraint 
switch: overall switching activity constraint 
cost: cost constraint at current package level 

HierPartPack(G, P, C) 
begin 

level<- 1        Guvti +- G        Solution — null 
while level < k do 

Set.Constraini() 
(status, Solution) — MP(Gltvel, P(level), cost, 

area, switch, level) 
StatArrfk] — status 
case status is 

SUCC: 
level *— level + 1 
HN :: read.partition(Solution) 
HN:: construcLnetlist(level) 

BEST: 
if ((SiatArrflevel - 1]= SUCC) A 

(BtkArrfkJ < MaxBtk)) then 
BtkArrfkJ <- BtkArrfkJ + / 
level — level - 1      /* back-track */ 

else 
level — level + 1 
HN :: read.partition(Soiuiion) 
HN :: construct.netlist(level) 

end if 
FAIL: 

if ((StaiArrflevel - 1] = SUCC) A 
(BtkArrfkJ < MaxBtk)) then 

BtkArrfkJ <- BtkArrfkJ + 1 
level — level - 1      /* back-track */ 

else 
return (null) 

end if 
end case 
Gttvei <— HN :: read.netlist(level) 
/* retrieve next level netlist */ 

end while 
TetuxnfSolution) 

end 

Algorithm 3.2 (Multiway Partitioning Algorithm) 
G: input graph, P: package set 
p: individual package from P 
area: overall area constraint 
switch: overall switching activity constraint 
C: cost constraint on design 
level: level in package hierarchy 

MP(G, P, C, area, switch, level) 
begin 

min.seg — mas(area/max.area(p), 
switch/max_switdi(p)) 

max.seg *— num.cell(G) /* # of nodes in graph */ 
best.cost <— co        status — FAIL 
Solution <— null 
for num.seg = minseg to maxseg do 

Best - KWAY(G, P, numscg, level) 
/* generate first partition */ 
num.fmJ.te *— 1       num.fmJmp <— 1 
status <— check.constraint(Best, area, switch, C) 
while (status £ SUCC A 

num.fm.ite < MAXJTMJTE A 
num.fm.imp < MAXJTMJMP)    do 

5 — KWAY(G, P, nunuseg, level) 
status *— check.constraint(S) 
num.fm.ite <— num.fm.ite ■+• 1 
best.costJnoay «— cost(Best) 
if (status = SUCC) V ((status = BEST) A 

(cost(S) < besLcostJrway))  then 
Best — S 

end if 
if (cost(S) < best.cost.kway) then 

num.fmJmp — 1 
else 

num.fm.imp — num.fm.imp + 1 
end if 

end while 
if status = SUCC then 

return (status, Best) 
elsif (status = BEST) A (cost(3est) < 

best-cost) then 
Solution — Best 
best.cost — cost(Best) 

end if 
end for 
return^aius. Solution) 

end 
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Algorithm 3.3 (k-way FM Algorithm: KWAY) 
G: graph G = (V,E), V is a sei of vertices and E is a 
set of edges 
P: set of packages, S: {si, s2l • • •, sn } a partition of G 
with k segments 

KWAY(G, P, k, level) 
begin 

Best *— initializef)    /* create initial partitions */ 
if level = 1 then    /* pure behavior specification 

-  estimate attributes */ 
for all 5 € Best do 

Schedule/Performance Estimate s 
and generate A(s), S(s), B(s), and T(s) 

end for 
end if 
best-cost *- 0      S <— null      cont-part <- TRUE 
iie-cnt <— 1      imp.cnt ♦— 1 
for all s € Best do        /* map partition segment 

to package and find cost */ 
best-cost *— best-cost + cost(B(s)) 

end for 
while cont-part = TRUE do 

for i= 1 to k—1 do 
for j — i+1 to k do 

twojway-fm(si, Sj) 
end for 

end for 
if level = 1 then    /* pure behavior specification 

•   estimate attributes */ 
for all s 6 S do 

Schedule/Performance Estimate s 
and generate A(s), E(s), B(s), and T(s) 

end for 
end if 
curr.cost — 0 
for all s € 5 do        /* map partition segment 

to package and find cost */ 
curr.cost — curr.cost + cost(B(s)) 

end for 
ite-cnt «— ite-cnt + 1 
if curr.cost < best-cost then 

imp.cnt «— 1        Best — 5 
/* save best partition seen so far */ 

else     imp.cnt *— imp.cnt + 1    end if 
if ite.cnt = MAXJTE V imp.en* = IMP.CNT 

then     cont.part <— FALSE    end if 
end while 
return,''5es<^ /* reinere iesi partition */ 

end 

from one partition segment to the other, taking 
care not to violate area and switching activity con- 
straints. The two.way.fm algorithm is based on Fiduc- 
cia and Mattheyses's bi-partitioning algorithm [11]. 
two.way.fm is invoked until, either a user specified 
limit on number of total iterations is exceeded, or a 
user specified limit on number of iterations over which 
partition cost does not improve is exceeded. The best 
cost solution found during the iterations is returned 
as the k-way partition. 

Scheduling and Performance Estimation: To 
evaluate the cost of level 1 partition segments, the PC- 
way FM invokes the scheduler, which also estimates 
the performance attributes. Scheduling is the first 
important step in the high level synthesis process. 
The input behavioral specification is converted into 
an equivalent data flow graph (DFG) representation. 
Scheduling operates on the DFG. DFG operations are 
assigned to specific control steps and are bound to 
physical ALUs available in the component library. The 
output of scheduling is a time-stamped and partially 
bound data flow graph, that satisfies specified con- 
straints. Scheduling determines execution speed of the 
synthesized design in terms of clock speed and number 
of clock cycles required to execute all operations. For a 
given parameterized component library, we can com- 
pute the area, average switching activity, and clock 
speed costs from the schedule produced by the sched- 
uler. An implementation of Paulin 's force-directed list 
scheduling [9], extended for communicating and con- 
currently executing processes [8], is used. Switching 
activity estimation technique has been reported in [7]. 

4    Multicomponent Synthesis 
Multicomponent synthesis is carried out by synthe- 

sizing individual partition segments at level 1. Fig- 
ure 2 demonstrates how we integrate our hierarchi- 
cal partitioning environment with a high level synthe- 
sis system to produce multicomponent designs with 
packaging hierarchy. We call this integrated sys- 
tem, MSS (Multicomponent Synthesis System) [10]. 
Design tradeoffs are performed by considering vari- 
ous partitions and carrying out scheduling and per- 
formance estimation on proposed partition segments. 
The performance attributes of the synthesized RTL de- 
signs are determined and compared against the capac- 
ity and cost constraints imposed by the packages they 
are bound to. Also, a global controller is automati- 
cally placed on a partition segment and interconnected 
with the RTL design segments. The global controller is 
placed on a partition segment whose package has the 
most space to fit the controller. Details of the con- 
troller model to support multicomponent partitioning 
are discussed in [13. 14, 16]. 
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Figure 2:  Hierarchical Behavioral Partitioning 
for Multicomponent synthesis 

At the end of multicomponent synthesis and hi- 
erarchical package design we have a multicomponent 
design composed of interacting RTL design segments. 
The behavioral partitioning phase produces multiple 
behavior segments that are completely synthesized to 
RTL designs using a high level synthesis system such as 
DSS [12,13]. Also produced is a hierarchical structural 
design (the leaf nodes in this design are the individ- 
ual RTL designs) that is mapped onto efficient cost- 
effective packages from a package library. We func- 
tionally validate our approach by simulating the hi- 
erarchical RTL design and the input behavior for the 
same set of test vectors and comparing their outputs. 

5     Results 
We present results for a number of examples to 

demonstrate the validity of our behavioral partitioning 
approach for multicomponent synthesis and hierarchi- 
cal package design. Details of our package library is 
shown in Table 1. Data about area, pin, switching ac- 
tivity, and clock speed constraints supported by each 
package and the cost of the package are presented. 
Table 2 presents details of the number of lines of code 
in behavior level VHDLspecification and the number of 
processes for each of our examples. 

Move Machine: The instruction set of the Move 
Machine controls instruction and data flow. It does 
not compute any data values.   ALU operations are 

UP Name 

Tinyl 
Tiny2 
Tinv3 
Tiny4 
Smaill 
Small2 
Sraall3 
PÜA-1 
PGA-2 
PGA-3 
PGA-4 
PGA-5 
PGA-6 

"TTT 
"PTI" 
"PTT 

"PTT 
Cer-l 
Cer-2 
Cer-3 

PGA-1C 
PGA-2C 
PGA-3C 
PGA-4C 
PGA-5C 
MCM-1 
MCM-2 
MCM-3 
Board-1 
Board-2 
Board-3 

Board-4 
Board-5 
Board-6 

MP)'  I B(p) 

12 
15 
18 
20 
12 
IS 
IS 
20 
20 
20 

12 
IS 
13 
18 
20 
12 
15 
18 
20 
20 
200 
300 
400 
300 
400 
500 
600 
800 
1000 

40 
40 
40 
40 
40 
40 
40 
84 
84 
84 
84 
84 
169 
40 
40 
40 
40 
40 
40 
40 
40 
84 
84 
84 
84 
169 
169 
169 
169 
80 
SO 
128 
128 
128 
128 

H(pp | T(p)- 

50 
60 
80 
120 
150 
200 
200 
200 
300 
400 
500 
800 

50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 

1000 

50 
60 
80 
120 
150 
200 
250 
300 
220 
320 
450 
850 

1000 

1000 
2000 

3000 
2000 

3000 
4000 

5000 
8000 
12000 

50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
50 
75 
75 
75 

100 
100 
100 
100 
100 
100 

C(p>* 

400 I 

500 
600 I 

700 
800 
900 
1000 
1200 
1300 

1400 
1500 

1600 

1800 

250 
300 
350 
400 
450 
500 
550 
600 
800 
900 
1000 

1200 
1500 

10000 
15000 
20000 
300 
400 
500 
600 
800 
1200 

sq. mm;   + : 1000 node switches;   - : ns;   # 
Table 1: Package Alternatives 

assumed to be memory mapped. Fifo: Fifo models 
a producer consumer problem. Shuffle: The Shuffle 
is a high speed reconfigurable 32 bit shuffle-exchange 
network for parallel signal processing. The Shuffle 
exchange is a commercial product of Texas Instru- 
ments, Inc. dyn is a five process description that 
monitors and maintains the dynamic length and maxi- 
mum length to which a queue in a producer-consumer 
problem grows, alu is a nine process description of 
an arithmetic logic unit. dynl-dynlO and alul-alvö 
are multiple processing elements generated by making 
multiple instantiations of dyn and alu respectively. 

5.1    Multicomponent Synthesis and Hier- 
archical Package Design 

Tables 3 and 4 present results of multicomponent 
synthesis and hierarchical package design for the de- 
sign examples in Table 2 with the package library 
shown in Table 1. For the smaller examples (Move Mc 
- dyn2), Table 3 presents: (1) number of processes; (2) 
hierarchical partition segments mapped onto packages 
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1   Example |  Num Lines (VHDL) |  Num Proc j 

Mv Mc 73 3         1 
Fifo 65 3         I 
Shuffle 472 5         1 
dynl 132 5          | 
dyii2 254 10       1 
dyn3 376 15        j 
dyn4 498 20        1 
dynS 620 25         j 
dyn6 742 30        | 
dyn7 864 35         | 
dyn8 986 40         | 
dyn9 1108 45          | 
dynlO 1230 50         1 
alul 100 9         1 
alu2 188 18        | 
alu3 276 27        | 
alu4 364 36        | 
alu5 452 45         | 

Table 2: Design Data for Examples 

from the package library (at level 1, partitioning of 
processes into segments, synthesized eventually into 
RTL designs); (3) actual number of back-tracks by the 
hierarchical partitioning and package design algorithm 
and the limit on number of back-tracks (BTK); (4) ac- 
tual cost of the design and the cost constraint; and (5) 
execution time. With a large number of processes it is 
difficult to present assignment of processes to partition 
segments, hence for dyn3 - dyn4, Table 3 presents the 
number of processes on each level 1 partition (instead 
of presenting individual partitions). With an even 
larger number of processes, it is difficult to present 
even details of level 2 partition segments. Thus, Ta- 
ble 4 presents the following data for all designs in Ta- 
ble 2: (1) number of processes; (2) number of back- 
tracks/BTK; (3) actual cost/constraint; and (4) exe- 
cution time. 

For each example, the cost constraint was progres- 
sively tightened until the algorithm failed to find a 
cost-satisfying solution. In all cases, if a constraint- 
satisfying solution existed, it was discovered by the 
algorithm. This was verified by manual examination 
of the examples. The results establish the validity of 
the algorithm. An interesting observation that vindi- 
cates our choice of the back-tracking algorithm is that 
in all our examples the most times the algorithm ever 
back-tracks is three (Table 4). This is because the al- 
gorithm back-tracks only if it can potentially find a 
solution with better cost and, also, the algorithm con- 
verges to a constraint-satisfying solution fairly rapidly. 

Multicomponent Synthesis vs  Hierarchical 

RTL Partitioning: We also developed a Hierarchical 
RTL partitioner [14] as an alternative approach. Here, 
we synthesize the input behavior and the partition the 
resultant RTL design. Table 5 presents a comparison 
of hierarchical behavioral partitioning and hierarchi- 
cal RTL partitioning approaches. Blanks indicate that 
the input design was too large to be handled by the 
RTL partitioner. For each example, the better dol- 
lar cost solution is bold-faced. RTL partitioning yields 
better designs for smaller examples where the number 
of synthesized RTL components is relatively small (< 
200). For larger examples multicomponent synthesis 
clearly out-performs RTL partitioning in the quality of 
solutions. Also, the time taken by RTL partitioning is 
more than the time taken by multicomponent synthe- 
sis by an order of magnitude (two orders of magnitude 
for larger examples - alu4, dyn3). 

Hierarchical Package Design without 
Scheduling: Since scheduling and performance es- 
timation are time consuming, we modified HCP and 
KWAY by replacing the schedule and performance esti- 
mation steps by approximations for area and switch- 
ing activity. In this approach, individual processes are 
first scheduled and performance estimated. Then, for 
level 1 segments, the area and switching activity costs 
of the individual processes in the segment are summed 
to obtain the total area and switching activity of the 
overall segment. These numbers are then adjusted by 
a small percentage (10-30%) to take into account the 
possible sharing of resources if the processes had been 
actually scheduled together[14]. Table 6 presents re- 
sults of hierarchical partitioning and package binding 
with and without an integrated scheduling and perfor- 
mance estimation step.The better dollar cost for each 
example is bold-faced. Invalid indicates that at least 
one of the partition -segments at level 1 does not fit 
on available packages; thus,...the design is not valid. 
The approach with scheduling out-performs the ap- 
proximation method, especially for the larger designs. 
However, (a) execution time for the approximation 
method is very small; and (b) the estimated cost of 
packaging the designs are fairly close to the solution- 
sreported by the algorithm with embedded scheduling 
algorithm. Thisobservation indicates that the approx- 
imation algorithm should be usedto quickly generate 
approximate dollar cost constraints to be imposed on 
the rigorous algorithm. 

6    Conclusions and Discussion 
We have presented a hierarchical behavioral par- 

titioning and package design algorithm. We demon- 
strated a methodology to integrate our partitioner 
with a high level synthesis tool to create a multicom- 
ponent synthesis and hierarchical package design en- 
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Example 
No. of 
Procs 

Segments and Mapping Num 
Bklrk/ 

BTK 

Cost/ 
Constraint 

(S) 

Exec 
Time 

(s) LeveKJ Levei-2 Level-1 

Mv Mc 3 jjl-Board-1 JU-PGA-5C .»l-PGA-o- 
EXE 

1/10 5600/5000 6 

JU-^üA-IC; a^-fuA-l 
FET. DEC 

Fife 3 jjj-Board-1 au-Pi-5 .»l-Smaill 
FIFO 

PRODUCER 
CONSUMER 

0/10 1550/3000 2.7 

atuitae 5 i21-öoard-2 »U-PÜA-4C; Jt-PÜA-4 
shuffle-l 

0/10 13900/12000 59.8 

«la-ruA-u; *2-füA-4 
shuffle-2 

«is-fUA-u; j3-r-UA-4 
shuffle-3 

axt-r'UA^t; 
shuffle-4 

ais-fUA-Jc; «5-fUA-4 
output 

dynl 5 jjj-Board-l au-Cer-3 *1-Small3 
sl.p_l,sl-p-pt 

. sl-p-sl.sl-p-2 
sl-p-st 

1/10 1900/2000 3.6 

alul 9 j21-Board-1 »u-Cer-2 31-PUA-l 
sl-nbp,sl_nap 
sl-np,sl-outp 

1/10 3100/2500 100.7 

32-Lmy I 
sl_mp,sl-ap 

sl.op 
»12-fl-l 33-liny 1 

sl-dp,sl_sp 
dyn2 10 J2i-Board-1 3n-Cer-3 «1-Small-1 

s2_p_sl,s2-p-pt 
s2.p-2 

2/10 3350/3200 212.7 

.»2-iinyl 
s2_p.st,sl_p_st 

»12-fl-ö 53-ämaul 
sl_p_sl.sl_p.pt 
sl.p_l,sl_p__ 

dyn3 15 S2i-Board-l «ll-Pl-3 ai-Tiny-3 
3 procs 

1/10 5000/5000 126.1 

«12-P1-5 32-Smaiil 
4 procs 

a^-rU-ö S3-small 1 
4 procs 

ai4-r-l-ö S4-Smaiil 
4 procs 

alu2 18 421-Board-1 «H-PGA-3C ai-PGA-3 
6 procs 

1/10 6700/5000 412.8 

^12-^1-5 32 -small 1 
5 procs 

JH-fUA-UU a3-iinyl 
1 proc 

S4-imyl 
3 procs 

Js-linyl 
2 procs 

JH-r-l-l 3s-1 my I 
1 proc 

dyn4 20 32i -Board-1 3U-P1-5 Jl-SmaHl 
S procs 

0/10 6350/8000 229.3 

312-P1-1 .52-liny 1 
1 proc 

Jl3-<Jer-2 53-Small. 
6 procs 

4n-r*l- 3 «4-iiny.i 
3 procs 

«is-r-1-4 Ss-liny4 
*4 procs 

sis-r^-l j$-lmyl 
1 proc 

Table 3: Multicomponent Synthesis with Hierarchical Package Design Results 
Note: s-p denotes the mapping of segment s onto package p from the package library. Also, at level 1, number of 
processes on each partition segment are presented. 
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Example 
No. of 
Procs 

Num BkTrk/ 
BTK 

Cost/Constraint 
(S) 

Exec 
Time (s) 

dynö 25 0/10 8350/8000 349.5 
alu3 27 0/10 12700/8000 579 
dyn6 30 1/10 9850/9000 1470.7 
dyn7 35 2/10 11200/10000 3141 
alu4 36 3/10 14100/15000 1549.4 
dyn8 40 1/10 11850/12000 1863.5 
dyn9 45 1/10 13800/13000 3684.1 
aluö 45 2/10 17750/18000 1626.4   | 
dynlO 50 2/10 16850/15000 6452.2   | 

Table 4: Multicomponent Synthesis and Package Design Results (Contd ...) 

Example 
Num 
Proc 

Num 
RTL 

Comp 

riierarcaical 
Behavioral Partitioning 

Hierarchical 
RTL Partitioning 

Cost (S) 
Constr. 

•btlc/ 
BTK 

Cost 
(S) 

tixec 
Time (s) 

Btk/ 
BTK 

(Jost 
(S) 

bxec 
Time (s) 

Mv Mc 3 53 1/10 5600 6 0/10 4250 13.2 5000 
rifo 3 76 0/10 1550 2.7 0/10 1750 6.4 3000 
Shuffle 5 379 0/10 13900 59.8 - • - 12000 
dynl ö 128 1/10 1900 3.6 0/10 1550 11.9 2000 
aiul 9 65 1/10 3100 100.7 0/10 1900 6.5 2500 
dyn2 10 234 2/10 3350 212.7 0/10 6200 6560 3200 
dyn3 10 334 1/10 5000 126.1 d/lö 530Ö0" 113272 5000 
aiu2 IS 123 l/lÖ 6700 412.8 0/10 5400 2976 5ÖÖÖ 
dyn4 20 - 0/10 6350 229.3 - - - 8000 
dynö 25 - 0/10 8350 349.5 - - - 8000 
alu3 27 161 0/10 L 12700 5« 0/10 10850 62äl 8000 
dyn6 30 - 1/10 9850 1470.7 - - - 9000 
dyn" 35 - 2/10 11200 3141 - - - 10000 
aiu4 36 205 3/10 14100 1549.4 0/10 53600 109850 15000 
dyn8 40 - 1/10 11850 1863.5 - - - 12000 
dyn9 45 - 1/10 13800 3684.1 - - - 13000 
aluö 45 - 2/10 17750 1626.4 - - - 18000 
dynlO 50 - 2/10 16850 6452.2 - - - 15000 

Table 5: Behavioral Partitioning vs RTL Partitioning approaches 

Example 
Num 
Proc 

With Scheduling W ithout Scheduling 
Cost (S) 
Constr. 

Btk/ 
BTK 

Cost 
(S) 

hxec 
Time (s) 

btk/ 
BTK 

(Jost 
(S) 

hxec 
Time (s) 

Füo ■3 0/10 1550 2.7 0/10 1550 1.1 3000 
Shuffle 3 0/10 139Ü0 59.S 0/10 13900 29.8 12000 
dynl 5 1/10 1900 3.6 0/10 1900 1.4 2000 
aiul 9 1/10 3100 100.7 0/10 3550 11.3 2500 
dyn2 10 2/10 3350 212.7 1/10 3600 9 3200 
dyn3 15 1/10 5000 126.1 0/10 Invalid 5.8 5000 
alu2 18 1/10 6700 412.8 1/10 6800 76.2 5000 
dyn4 20 0/10 6350 229.3 0/10 7150 10.3 8000      | 
dyn5 25 0/10 8350 349.5 0/10 Invalid 12.4 3000 
alu3 27 0/10 12700 579 1/10 11250 248.9 8000 
dyn6 30 0/10 9000 650 0/10 Invalid 26 9000 
dyn 7 35 2/10 11200 3141 1/10 11850 252.5 10000 
alu4 36 3/10 14100 1549.4 1/10 Invalid 77.S 15000 
dyn8 40 1/10 11850 1863.5 1/10 Invalid 438.9 12000 
dyn9 45 1/10 13800 3684.1 2/10 Invalid 708.1 13000      | 
alu5 45 2/10 17750 1626.4 1/10 invalid 1092 18000      I 
dyn 10 50 2/10 16850 6452.2 2/10 Invalid 875 15000     | 

Table 6: Multicomponent Synthesis: With vs Without Scheduling 
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vironment, MSS (Multicomponent Synthesis System) 
[10]. MSS takes as input a multi process VHDL be- 
havior, a parameterized component library, a package 
library, and an overall cost constraint on the design 
and generates a hierarchical RTL design while simulta- 
neously constructing a physical package hierarchy for 
the design. 

We presented results to evaluate the performance 
of the approach with respect to the quality of de- 
signs produced and execution times for a number of 
design examples. Hierarchical RTL partitioning and 
package design yields good results for examples where 
the number of RTL components in the synthesized de- 
sign are less than 200. When partitioning at the RTL 
netlist level, the design architecture is frozen (during 
high level synthesis). Alternate multichip designs can- 
not be explored during hierarchical RTL partitioning, 
whereas MSS explores the design space by considering 
alternate implementations during high level synthesis. 
Also, thermal profiling of RTL designs is too time con- 
suming and is not viable for large designs. For almost 
all the examples, MSS produces better results and ex- 
ecutes much faster than the hierarchical RTL partition- 
ing. For smaller designs, scheduling overhead can be 
reduced through approximate estimation procedures 
to evaluate the cost of level 1 segments form individ- 
ual process costs. From the results, we infer that the 
hierarchical behavioral partitioning is both a suitable 
and a viable approach to multicomponent synthesis 
and hierarchical packaging. 
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Resource Constrained RTL Partitioning for Synthesis of 
Multi-FPGA Designs 

Abstract 

In this paper we address the problem of partitioning register level designs for implementation on multiple FPGAs. 

The partitioner uses a modified multi-way Fiduccia-Mattheyses (FM) algorithm. Cost estimation functions needed 

by the partitioner to estimate the resources needed by the design on a FPGA have been developed. The methodology 

for estimation of resources on an FPGA device, and partitioning of the design are discussed in detail. For this 

paper, we use Xilinx XC4000 family of FPGAs as our target architecture. Within this family, heterogeneous 

selection of FPGA devices can be used. 

1 Introduction 

A design that has to be implemented on a Field Programmable Gate Array (FPGA) needs certain resources on 

the FPGA device. The kind of resources on the chip depend on the target architecture. These resources include 

the Configurable Logic Blocks (CLBs) containing the Function Generators (FG) and Flip-Flops (FF) for Xilinx 

architecture of FPGAs. If the design which has to be down-loaded onto an FPGA needs more resources than 

available on one device, there is a need to partition the design into multiple segments such that each of the 

partition segments satisfies resource constraints on the devices available. To achieve this goal, we formulate the 

Multi-FPGA partitioning problem for Register transfer level (RTL) designs as follows: 

Given a register level design represented as a net-list of components and constraints in terms of 

maximum number of available CLBs, function generators, flip flops and allowable user I/O pins 

on each chip, partition the design into a set of interconnected design segments, each of which 

satisfies the constraints. 

The partitioning system creates one or more bit map files depending on the specified constraints. Each bit-map 

file can be down-loaded onto a Xilinx xc4000 family FPGA. Input to the system is a register level design which 

consists of a data-path and a controller. The data-path consists of a collection of components selected from 

a known parameterized component library. This library has various components such as adders, subtractors, 

multipliers, dividers, latches, multiplexers etc. The controller is specified as an algorithmic behavioral description 

of a finite state machine. These components are further discussed in detail in later sections of the paper. 

2 Integration of tools for Synthesis and partitioning of FPGA designs 

We use a high level synthesis system which takes behavioral descriptions as input and produces register transfer 

level descriptions of the same design. The high level synthesis system is called Distributed Synthesis System 

(DSS), developed at The University of Cincinnati [?], for producing RTL designs. The system produces register 

transfer design in two parts, namely, the 'data-path' and the 'controller'. The data-path is represented as a 

net-list of register transfer level components. The controller is represented as a finite state machine. 

The input to the multi-FPGA partitioning system is a register level design (output of DSS) and the constraints are 

the FPGAs available, the library of RTL components, and the resource utilizations of all register level components 

1 
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Figure 1: Multi-FPGA synthesis flow 

for varying generic parameters. Resource estimator and the partitioning algorithm form the central components 

of the partitioning process. Resource estimation involves accurate estimation of necessary resources for the design 

and the partitioning involves the proper choice of design segments which satisfy user specified constraints. The 

resources here refer to the number of CLBs (packed CLBs), the number of function generators, and the number 

of flip-flops. Pin constraints are also taken into account while determining the partitions. If the design cannot be 

partitioned into the available number of chips, each with allowed number of I/O pins, the partitioner returns the 

best possible solution obtained during the specified number of iterations on the K-way FM partitioning algorithm. 

The resource estimator works on the data-path and the controller separately and gives estimates for the overall 

design using these individual estimates. Once the estimation is done, it is determined whether the given design 

needs to be partitioned or not depending on the resources needed by the design and the specified selection of 

FPGA devices. The partitioner is invoked if needed. It uses a modified multi-way Fiduccia-Mattheyses algorithm 

[?], discussed later, to produce partition segments which satisfy the constraints. These partitions are used as 

input to logic synthesis tools to generate bit-map files. The design flow for obtaining programmed bit-map files 

for FPGAs is shown in Figure 1. We use the Synopsys design analyzer for logic synthesis of partitioned RTL 

designs. This produces a gate level net-list of the design in terms of hard macros and function generators from 

Xilinx library. Since our target implementation is Xilinx FPGA devices, we use Xilinx XDM tools for generating 
layouts and producing bit-map files necessary to down-load the design onto the FPGA. 

3    RTL component library 

The data-path part of the register level design contains components selected from a RTL component library. 

These components in turn use hard macros from Xilinx XC4000 family. The descriptions of these components 

were initially written at behavioral level and ideally, the synthesis tools should be able to understand all of the 
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Component Xilinx Hard 
Macros used 

Const_reg Buf 
Adder Addl, Vcc, Inv 

Subtracter Addl, Gnd, Inv 
Comparator Nor2, And2bl,And2, Inv, 

And3bl,Xnor2 
Latch FDCE 

Multiplexer M2_l 
Shift-reg And2, Or2, Or3 

Signal And2, And3, And4, Inv, 
FDPE, 0r2, Xnor2, FDCE 

And And2 
Or Or2 
Nor Nor2 
Xor Xor2 
Xnor Xnor2 
Not Inv 

Table 1: RT level Components in component library instantiated in RT level code 

currently available target architectures and synthesize the descriptions for a particular target architecture. In this 
process, the synthesis tool might produce a gate-level design, which when taken to layout might be violating the 

area constraints, or might be so computationally intensive that it takes several hours to synthesize. To overcome 

these problems, the register level components used in our library instantiate the Xilinx library components directly 

and thus are targeted for Xilinx xc4000 family of FPGA family. These components are parameterized for varying 

values of bit-width. Apart from this, components like Multiplexer are parameterized for other generics like number 

of inputs and number of select lines. Table 1 shows the components and the corresponding Xilinx hard macros 

used. 

Each library module is characterized for the number of CLBs, function generators and flip-flops for different values 

of generic parameters. This characterized data is made available to the partitioning tool in the format shown 

in Table 2. This data was obtained experimentally by synthesizing several instances of each of the components 
with varying generic parameter values and generating the Xilinx LCA (Logic Cell Array) files. In this table, 

FF, FG and CLB denote the necessary number of flip-flops, function generators and CLBs respectively for each 

component. Each entry in this table is of the form (x,y) where 'x' is the bit-width of the component and 'y' is 

the resource needed. Note that the Table 2 shows only a small selection of the data for our library. For example, 

the resource utilizations for the multiplexer module are for 2 inputs and 1 select line. 

4    Resource Estimator 

Estimation functions for estimating the number of function generators, flip-flops and CLBs needed for an input 

design have been developed.   Estimation of resources needed by a design represented as a data path and a 
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controller can be done by considering each of these entities separately. 

Estimates for data-path : We estimate the number of function generators and flip-flops needed by the data 

path and use this data in determining the number of CLBs needed by the whole design when it is taken to layout. 

To estimate the number of function generators and flip flops, we add up these values for all the instantiated 

components. The generic values used to instantiate various register transfer level components, and their respective 

resource utilizations are obtained through table-lookup from the system database (Table 2). Logic trimming done 

at gate level is taken into account by reading the input net-list, and determining the signals not being used. In 

other words, we determine the load-less signals, if any, in the design. This does not happen frequently in the case 

of synthesized designs. However, for modules such as the "signal" module in Table 2, which contains multiple 

flip-flops, outputs of some flip-flops may not be used. The flip-flops FDPE and FDCE are the hard macros 

used in Xilinx FPGAs to store the bits in the clocked components. Once the load-less signals are determined, 

the corresponding number of flip-flops used to store these signals is subtracted from the number obtained by 

summing up the individual component flip-flop counts in the design. This gives the number of flip-flops necessary 

for the data-path. A similar procedure is followed for obtaining an estimate of function generators used by the 

data-path. 

• No. of Flip-Flops needed by data-path {FFdp)= £re<fP FF.count(r) - J2,ZL UFF.count(s) 

where, FF.count{r) is the number of Flip-flops of individual register level components, UFF-COunt{s) is 

the unused flipflop count of component whose output signal is V and L is the set of load-less (unconnected) 

signals in the data-path. 

• No. of Function Generators needed by the data-path {FGdp)^    Ylr£dp FG-count(r)~J2seL UFG-count{s) 

where, FG-count(r) is the number of Function generators of individual register level components in data- 

path, UFG-count(s) is the number of unused function generators of component whose output signal is 's' 

and L is the set of load-less signals in the data-path. 

Since each CLB in XC4000 family of FPGAs has 2 function generators and 2 flip-flops, the number of packed 

CLBs needed is determined to be half the number of flip-flops (function generators) for designs with dominating 

sequential (combinational) logic, that is, dominating number of flip-flops (function generators). That is, 

No. of Packed CLBs needed by the data-path = 0.5 * Max(FFdp, FGdp) 

Estimates for controller : The necessary number of function generators and flip-flops in the controller part of 

the design can be estimated by studying the description of the finite state machine (FSM). The number of states 

in the controller is the main factor which determines the amount of logic required on the chip. The number of 

state variables depends on the number of states in the FSM and is given by /o^2(number of states). A register 

whose bit-width is equal to the number of state variables is needed to store the present state and next state 

variables. 

The elaborated FSM is represented as a set of multiplexers and gates by the logic synthesis tool. The size of 

inputs and select signals to the multiplexers was found to be proportional to the control word length, and number 
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S.No. Module 

Name 

(Bit-width, Resource count) 

1 Latch FF : (1,1),(2,2),(4,4),(8,8),(16,16) 
FG : (1,0),(2,0),(4,0),(8,0),(16,0) 

CLB : (1,1),(2,1),(4,2),(8,4),(16,8) 

2 Multiplexer FF : (1,0),(2,0),(4,0))(8,0),(16,0) 

FG : (1,1),(2,2),(414),(8,8),(16,32) 

CLB : (1,1),(2,1),(4,2),(8,4),(16,16) 

3 Signal FF : (1,7),(2,12),(4,19))(8,35)J(16,67),(32,80) 

FG : (1,3)1(2,5),(4,7),(8,13),(16,25),(32,40) 

CLB : (1,4)>(2,6)1(4,10),(8,17),(16,34),(32,40) 

4 Comparator FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0) 

FG : (1,3),(2>8),(4,18),(8,37)1(16I38),(24,60),(32,157) 

CLB : (1,1),(2,4),(4,9),(8,18),(16,19),(24,30),(32,78) 

5 And FF : (ll0),(210),(4,0)>(8,0),(16>0) (32,0),(64,0) 
FG : (1,1), (2,2), (4,4), (8,8), (16,16) (32,32), (64,64) 
CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32) 

6 Or FF : (1,0),(2,0),(4,0),(8,0),(16,0) (32,0),(64,0) 

FG : (1,1), (2,2), (4,4), (8,8), (16,16) (32,32), (64,64) 

CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32) 

7 Nor FF : (1,0),(2,0),(4!0),(8,0),(16,0) (32,0),(64,0) 

FG : (1,1), (2,2), (4,4), (8,8), (16,16),(32,32), (64,64) 

CLB : (1,1), (2,1), (4,2), (8,4), (16,8) (32,16), (64,32) 

8 Xor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0) 

FG : (1,1), (2,2), (4,4), (8,8), (16,16),(32,32), (64,64) 
CLB : (1,1), (2,1), (4,2), (8,4), (16,8),(32,16), (64,32) 

9 Xnor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0) 
FG : (1,1), (2,2), (4,4), (8,8), (16,-16) (32,32), (64,64) 

CLB : (1,1), (2,1), (4,2), (8,4), (16,8),(32,16), (64,32) 

10 Const_reg FF : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0) 

FG : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0) 

CLB : (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (8,0), (16,0) 

11 Adder FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0) 

FG:(1,1),(2,3),(4,6),(8,12),(12,18),(16,24),(20,30),(32;48),(64,64) 

CLB:(1,1),(2,1),(4,3),(8,6),(12,9),(16,12),(20,15),(32,24),(64,32) 

12 Subtractor FF : (1,0),(2,0),(4,0),(8,0),(16,0),(32,0),(64,0) 

FG : (1,1),(2,3),(4,6),(8,12),(12,18),(16,24),(32,48),(64,64) 

CLB:(1,1),(2,1),(4,3),(8,6),(12,9),(16,12),(20,15),(32,24),(64,32) 

13 Shift-Reg FF:(1,3),(2,4),(3,6),(4,8),(5,10),(6,12),(7,14),(8,16)(16,32),(32,40) 

FG : (1,1),(2,4),(3,6),(4,8),(5,10),(6,12),(7,14),(8,16) (16,32),(32,40) 

CLB : (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,7) (16.16),(32,20) 

14 Not FF : (1,0),(2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0),(32,0) 

FG : (1,0), (2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0), (32,0) 

CLB : (1,0), (2,0), (3,0),(4,0), (5,0),(6,0),(7,0),(8,0), (16,0), (32,0) 

Table 2: Data provided in Component-data file (input to estimator) 
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of function generators was found to be proportional to the number of states in the FSM. We conducted a series 

of experiments and found that the number of function generators needed by the FSM is lesser if the control 

word in the FSM depends only on the current state (Moore machine) rather than on the current state and the 

control inputs (Mealy machine). The number of gates ( and hence the number of function generators) needed 

by the FSM depends on the number of nested 'case' statements in the FSM description in VHDL. This implies 

that every time the input flags or input state bits are checked for assigning a value to the output of FSM, the 

number of gates/function generators increase. Using a large number of designs, the increase was found to be 3 

function generators for each nested 'case' statement. Hence the factor 3 in the equation below. The length of the 

control word, which is the output of the FSM does not significantly affect the amount of logic necessary for the 

controller. On the other hand, number of states in the controller has a major influence on the resources needed on 

an FPGA. We found that there is almost an exponential increase in the number of function generators necessary 

with increasing states in a controller. This is due to the extra logic that is needed for assigning values to the 

signals for each state that is included in the finite state machine. The exponent S was determined to be 2.0. This 

was found by varying the number of states in the controller, keeping all the other factors constant and producing 

LCA of the FSM. 

• No. of flip-flops needed by controller {FFe) = No. of state variables in the FSM. 

• No. of function generators needed by the controller (FGC) — 

No. of state variables ** S + 

No. of bits in control word * C + 

No. of nested 'case' statements * F 

where, S = 2.0, C = 0.3 and F =3. 

Since the number of function generators in a FSM is usually much larger number than the number of 
state variables (number of flip-flops) in the FSM, the number of packed CLBs needed by the controller is 
estimated to be half of the number of function generators. 

• No. of Packed CLBs needed by the controller = 0.5 * Max(f\Fc, FGC) 

Estimates for the complete design :    Estimates of resources needed by data-path and controller can be used 

in determining the number of function generators, flip-flops and packed CLBs needed by the complete design. 

• The number of function generators in the complete design {FGRTL) = (FGdP +FGC). For tighter estimates, 
a multiplication factor G can be taken into account, where G represents the global optimization factor. 

By synthesizing and analyzing a large number of designs, we found that the global optimization factor is 

found to lie between 0.6 and 0.9 depending on the amounts of combinational and sequential logic involved 
in the design. 

• Number of flip-flops in the complete design (FFRTL)= FFdP + FFC 

• Packed CLB count for the complete design (CLBRTL) = 0.5 * M&X(FGRTL, FFRTL) 
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5    Partitioning Algorithm For Producing Multiple FPGA designs 

Partitioning of a design involves determining the constraints such as the overall resource utilizations on an FPGA, 

and constructing the partitions subject to these constraints. 

The partitioner takes the input RTL net-list and produces multiple RTL design segments. Each segment is subject 

to the following constraints: 

1. Resource Constraint: The resources required by any segment of the design should not exceed the maximum 

allowed values set by the user on the particular FPGA part number. The constraints here refer to number 

of CLBs, function generators and flip-flops present in the FPGA device made available to the partitioning 

system. Let these constraints be denoted by CLBS, FG, and FFS, where V denotes an FPGA device 

available. 

2. Pin Constraint: Because of the limitation on the number of user I/O pins on any FPGA chip, we partition 

the input design into segments in such a way that the interconnect between the segments does not need 

more I/O pins than available. In other words, the number of pins on any segment should not exceed the 

allowed number of user I/O pins P, on each chip. This is checked for all the partitions of the design. 

3. Overall design constraint: Number of segments after partitioning should not exceed the allowed number of 

FPGA devices. 

We use the modified multi-way Fiduccia-Mattheyses algorithm [?] for partitioning an input design into multiple 

design segments. The multi-way FM partitioning algorithm used is shown in Figure 2. The partitioner begins 

by reading the package library. This package has the information about the FPGA devices available in the 
format shown in Table 6. The number of partitions is initialized to 1, and the FM partitioner is invoked with the 

number of partitions and the package library. The FM partitioner in turn invokes the K-Way Fiduccia-Mattheyses 

algorithm which works on the input design (in the form of a Graph 'G'), the number of required partitions and 

the FPGA package. It returns a Result, which is a flag to indicate whether or not all the partition segments are 

assigned a device. In the event when the Result is false (that is, not all partition segments have a fitting chip 

amongst the devices made available by the user), the partitioner increments the number of required partitions 

and repeats the above process while this number does not exceed the total number of available devices, or till a 

successful mapping of partition segments to FPGA devices is found. 

The K-Way partitioner initializes the values of total number of CLBs, function generators and flip-flops for the 
whole design, which are obtained as output of the estimation functions. It then determines the minimum number 

of FPGAs needed by the design. This is calculated as, 

Minimum number of partition segments = \Packed CLBs for complete design / MaxCLB] 

where, MaxCLB = Number of CLBs available on the largest FPGA device available. 

Once the number of chips is determined, a random initial partition of N partition segments is created by the 

K-Way FM algorithm, where N is the minimum number of chips. As a result, the graph G of V vertices is 

partitioned into N segments, each with a fixed number of nodes. The initial partition is saved as Best partition. 

The pins on all partitions are calculated by compute_pins_on_all_partitions() and the value saved as best.pins. K- 

Way partitioning is carried out by repeatedly invoking the standard FM bi-partitioning algorithm [?] on pairs of 
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Multi_way_FM_Partitioner() 

begin 

Package_ptr +— Read_package_data() 

Num_of_partitions =1 
While (Num_of_partitions <= Available_nunxxif_chips) 

Result <—' FM(Num_of_partitions, Package.ptr) 

if (Result =1) then 
return partitions 

else 

Num_oLpartitions *— Num_of_partitions + 1 

end while 

if (Result = 0) then 

return Best possible partition and prompt user for bigger FPGA devices 

end if 

end 

int FM(Num_of_partitions, Package_ptr) 
begin 

Initialize_private_data() 

K-way(G,  Num_of_partitions, Package.ptr) 

Result «— Check_assigned_chips() 

return Result 

end 

Figure 2: Algorithm for Multi-Way FM partitioning 

partition segments. two_wayJm() tries to improve bi-partitions by moving one node at a time from one partition 

to the other. Each time a move is made, ckeck.chip.constraint(S) is invoked to ensure that each partition segment 

satisfies the constraints. This function checks if the partition segment S satisfies the constraints such as CLBs, 

function generators, flip-flops and pins available on the chip and returns the status to K-Way FM. The status is 

true if the constraints are met by the partition segment and false otherwise. Once a chip is found in which the 

partition segment fits in, the device part number is assigned to this partition segment. 

The K-WAY FM algorithm is invoked repeatedly until either (1) a solution that satisfies the specified constraints 

is found, or (2) a user specified limit on number of iterations (MAX_ITER_CNT) is exceeded. The partitioner 

returns either a set of partition segments that satisfy the constraints or the best possible solution (if the constraints 

could not be met by all the partitions). 
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K-WAY(G, Num_oflpartitions, package_ptr) 

begin 
Best •(— initialize() 

Min-chips •*— calculate_min_chips() 

if Min-chips > Num_oLpartitions then 

N <— Min_chips 

else N <— Nurruof-partitions 

Create_initial_partition() 

Compute_pins_on_all_partitions() 

best_pins <— Pins(Best) 

S «- null 
continue-part <— TRUE 

iteration_cnt <— 1 
improve_cnt *— 1 

while continue_part = TRUE do 

for i = 1 to n—1 do 
for j = i+1 to n do 

twojway-fm{si, Sj) 

end for 

end for 
curr.pins «— Pins(S) 

iteration_cnt <— iteration_cnt + 1 

status <— check_chip_constraint(S) 

if curr.pins < best_pins V status = TRUE then 
improve.cnt <— 1 

Best <- S 

else 
improve_cnt *— improve_cnt + 1 

end if 
if iteration-cnt = MAX_ITER_CNT V 

improve_cnt = MAXJMP 
then    cont.part *— FALSE 

end if 
end while 

return(Best) /* retrieve best partition */ 

end 

Figure 3: Algorithm for partitioning (Contd.) 
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Check_chip .constraint (S) 

begin 

status <- TRUE 
for all Si £ S do /* segments in partition */ 

if CLBs(si) > CLBS Vpins(s{) > Ps V 

FG{s{) > FG, V FF(si) > FFS 

then  status +- FALSE 

end if 
end for 
return(status) 

end 

Figure 4: Algorithm for partitioning (Contd.) 

6    Implementation and results 

We have developed a vertically integrated system for a top-down design flow for FPGA synthesis with the high level 

synthesis system, DSS as the front end and multi-way Fiduccia-Mattheyses algorithm being used for producing 

partitions of the input design. We used Xilinx XC4000 as our target FPGA family and used Synopsys design 

analyzer and Xilinx XAGT design manager tools, to produce gate-level net-list and programmed bit map files 

respectively for FPGA implementation. We developed estimation procedures for estimating the resources needed 

by a register level design to be implemented on the FPGA devices. We used these estimates and produced multiple 

register level designs using the Multi-Way FM partitioning algorithm. 

Tables 3, 4 and 5 show actual and estimated resources needed by the data-path, controller and the complete 

design respectively. It can be observed from these tables that the estimated and actual values of flip-flops match 

exactly for the data-path and controller since the correct utilizations for the RTL components is provided to the 

estimator (in the case of data-path) and the number of flip-flops can be correctly known from the number of states 

in the FSM (in the case of controller) . Since the number of flip-flops for the overall design are calculated from 

those needed by the data-path and controller, the estimated values of flip-flops needed by the overall design match 

exactly with the actual values. On the other hand, we find that estimated and actual values of function generators 

in the data-path, controller and overall design differ on an average by about 6% in the case of data-path, 11% in 
the case of controller and 9% for the complete design. The number of packed CLBs for the complete design differ 

from the estimates due to the discrepancies in the estimates of function generators, which is in turn due to the 

FSM synthesis methodology used by the logic synthesis tool and global optimization over function generators . 

This deviation from the actual values was found to be about 10% on an average. 

Table 6 shows a sample FPGA device selection provided by the user. This has information such as the FPGA 

part number, number of chips of each kind available, and the resources available on each chip. Constraints and 

corresponding partitions obtained from the partitioner for a number of designs are shown in Table 7. The design 

utilizations in this table refer to the estimated values of resources needed by each of the designs. For the first 

example, the design fits in only one device and hence the mapping is as shown. In the case of 'DCT' example, 

suitable partitions for the devices available cannot be found. Hence there are no partitions available. Instead 

the partitining system prompts the user to try with bigger chips. The execution time of the partitioning tool for 

10 
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these examples lies between 1.2 sec to 4.0 sec. 

When a design is partitioned into multiple design units, the delay on the nets passing from one unit to the other 
might be so large that the the frequency of operation of the overall design is drastically reduced. We are currently 

extending our partitioning engine to incorporate delay constraints. 

Design No. of RTLcomp's 

in the data-path 

Function generators Flip-flops 

Estimate Actual Estimate Actual 

TLC 33 47 44 48 48 

SS-prod 34 423 374 369 369 

DCT 23 157 187 209 209 

Find 57 350 384 184 184 

Table 3: Estimated and actual values for data-path 

Design Num of 
states 

Control word 
length 

Function generators Flip-flops 

Estimate Actual Estimate Actual 

TLC 34 40 109 86 6 6 

SS-prod 37 40 143 132 6 6 

DCT 38 30 129 99 6 6 

Find 76 70 182 199 7 7 

Table 4: Estimated and actual values for controller 

Design Function generators Flip-flops Packed CLBs 

Estimate Actual Estimate Actual Estimate Actual 

TLC 

SS-prod 

DCT 
Find 

140   . 

510 

258 

479 

156 

411 

312 

520 

54 

375 

215 

191 

54 

375 

215 

191 

70 

255 

129 

239 

78 

205 

156 

260 

Table 5: Estimated and actual values for complete design 

11 
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FPGA Part CLBs Function Generators Flip-Flops I/O pins Num available 
XC4002 64 128 128 64 1 
XC4003 100 200 200 80 2 

XC4005 196 392 392 112 1 
XC4010 400 800 800 160 0 

Table 6: Sample FPGA Device Selection. 
Note : 'Number available' is specified by the user. The rest of the data is provided by a configuration file to the 

partitioning tool. 
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Design Design 

utilization 

FPGA package data 

Part(No. available) 

Partitions 

Chipl Chip2 Chip3 ChiP4 

TLC CLBs=70(78), 
FGs=140(156), 

FFs=54(54) 

XC4002 (2) 

XC4003 (1) 

XC4003 
FGs=140(156) 

FFs=54(54) 

- - - 

TLC CLBs=70(78), 

FGs=140(156), 

FFs=54(54) 

XC4003 (2) 

XC4004 (1) • 

XC4003 

FGs=140(156) 

FFs=54(54) 

- - - 

SS-Prod CLBs=255(205), 

FGs=510(411), 

FFs=375(375) 

XC4004 (1) 

XC4005 (1) 

XC4004 

FGs=204(152) 

FFs=168(168) 

XC4005 

FGs=306(259) 

FFs=207(207) 

- - 

SS-Prod CLBs=255(205), 

FGs=510(411), 

FFs=375(375) 

XC4005 (2) XC4005 
FGs=204(152) 

FFs=168(168) 

XC4005 

FGs=306(259) 

FFs=207(207) 

- - 

DCT CLBs=129(156), 
FGs=258(312), 

FFs=215(215) 

XC4003 (2) 

- - - - 

DCT CLBs=129(156), 
FGs=258(312), 

FFs=215(215) 

XC4004 (1) 

XC4005 (2) 

XC4004 

FGs=258(312) 

FFs=215(215) 

- - - 

Find CLBs=239(260) 

FGs=479(520) 

FFs=191(191) 

XC4008 (1) XC4008 

FGs=479(520) 

FFs=191(191) 

- - - 

Find CLBs=239(260) 

FGs=479(520) 

FFs=191(191) 

XC4004 (2) 

XC4005 (2) 

XC4004 

FGs=50(57) 

FFs=51(51) 

XC4004 

FGs=178(203) 

FFs=23(23) 

XC4005 

FGs=168(173) 

FFs=84(84) 

XC4005 

FGs=83(87) 

FFs=33(33) 

Table 7: Constraints and results of Partitioner 
Note : The resources are represented as estimated value (actual value). 
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Abstract 

Synthesis of pragmatic systems from high-level specifications requires representation and 

application of both functional requirements and constraints. This work presents a language 

for representing requirements and constraints in VHDL design representations and a prototype 

case-based synthesis system, VSPEC is an annotation language for VHDL developed to support 

axiomatic representation of requirements for system synthesis. VSPEC descriptions serve as syn- 

thesis goals and verification criteria. A prototype case-based synthesis system is also presented 

that uses VSPEC requirements as goal statements and descriptions of potential solutions. This 

prototype system demonstrates how synthesis can be performed at the systems level and how 

constraints can be used to implement a simple concurrent engineering process. 
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1    Introduction 

VSPEC is motivated by the need to specify digital system requirements in an implementation in- 

dependent fashion. Qualitatively, system requirements specify "what" a system should achieve 

without specifying "how" it should be done. Design specifications are developed from requirements 

and describe "how" requirements are implemented. Although VHDL [14] supports specification of 

specific designs, it does little to support requirements specification. In addition, VHDL does not 

support a consistent representation of constraints. Thus, requirements specification in VHDL and 

systems level synthesis from VHDL specifications are not practical activities. 

Lack of requirement and constraint specification has little effect when designing systems re- 

quiring few levels of abstraction. Excellent VHDL synthesis tools exist at the RTL level. However, 

there is a growing need for systematic design of very large, abstractly defined systems. With- 

out constraint information and precise requirements definition, effective systems engineering and 

concurrent engineering are impossible, and automated synthesis is even more difficult than this. 

With requirements and constraints specified, some degree of systems level design synthesis 

is possible. The case-based synthesis system presented here demonstrates how constraints can be 

integrated into an automated design process. System synthesis occurs in a typical, function oriented 

manner. However, constraints help rank potential solutions during case retrieval and are verified 

at each level of abstraction as the design progresses. 

This work concentrates on two subjects: the VSPEC language and a prototype synthesis sys- 

tem. First, the VSPEC interface language is presented. The general syntax' and notations used by 

VHDL and VSPEC are discussed followed by an example specification. Specific attention is given 

to describing how VSPEC represents both functional and non-functional system requirements. Also 

discussed is the relationship between algebraic specification and VSPEC with a presentation of syn- 
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thesis goal derivation. Second, a case-based reasoning synthesis process is presented. The basics of 

the technique are explained via an annotated example which highlights the role of constraints in 

the synthesis process. To conclude, perceived limitations of the synthesis system and our current 

research directions are described. 

2    Design and Requirements Specification 

Three basic constructs are used to specify a design in VHDL: (1) the entity specifies the interface 

of a system; (2) the architecture specifies the behavior and/or structure of a system; and (3) 

the configuration associates a specific architecture with an entity. The designer specifies 

a device interface using the entity construct, develops one or more behavioral or structural de- 

scriptions using the architecture and selects a specific implementation for the entity using the 

configuration construct. 

Each architecture represents a potential design at some level of abstraction. Behavioral spec- 

ifications describe the behavior of a solution using an Ada-like programming language. Structural 

specifications indicate how components are composed to construct a solution. In both cases, specific 

candidate designs are represented. 

Representation of system requirements in VHDL is restricted to an operational style - a "pro- 

gram" is written that describes an artifact having desired characteristics. Although the operational 

style is an excellent means for describing specific designs, it is not well-suited for describing system 

requirements for several reasons: 

1. It forces representation of a specific design, thus introducing implementational bias. 

2. It does not adapt easily to representation of performance constraints. 

3. Unimportant characteristics are indistinguishable from required characteristics of the design. 
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4. Users must deal with unnecessary detail. 

2.1    VSPEC Requirements Specification 

Figure la is an example VHDL entity representing a component that searches a collection of records 

for a specific record. Note there is no indication of what the component must accomplish or what 

performance constraints exist for it. The result is a black-box view of the component with no 

indication of requirements, as shown in Figure lb. An architecture can be developed, but such an 

architecture exhibits the negative characteristics described above. 

A solution to requirements representation in VHDL is VSPEC, a Larch interface language [8] 

developed for VHDL synthesis. The Larch family of specification languages consists of a collection 

of application specific interface languages and a common shared language. Each interface language 

defines sets of specification primitives containing useful constructs in a target application language. 

The shared language serves two purposes. First, it provides a target formal system for translating 

interface specifications. Second, it provides a language for writing auxiliary specifications and 

handbooks of common components. 

The traditional shared language is a first order algebraic language call LSL. In VSPEC, the 

primary shared language is REFINE [1], due to its support for transformation and synthesis, its 

formal basis, and its potential for execution. 

Figure 2a shows the VSPEC representation for the same search as the VHDL entity in Figure la. 

The added clauses specify input conditions, output conditions and constraints. Figure 2b shows a 

graphical representation of the same information. The VSPEC definition indicates that Vcc must be 

less that or equal to 5 and that the area (x x y) must be less than 0.3. No constraints are placed 

on heat dissipation (H), clock speed (Clk) or timing. 

The specification associated with Figure 2 avoids many of the problems with the operational 
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specification, style. A search routine is specified independently of any implementation by the 

ensures clause. The designer need not be concerned with the details of the search algorithm 

at the requirements level. Only characteristics necessary for specifying a search are included. Con- 

straints are clearly specified in the constrained by clause and do not interfere with the functional 

specification. 

2.2    The VSPEC entity 

All VSPEC annotations affect only the VHDL entity. No changes are made to architecture 

structures or any other VHDL structure. VSPEC clauses are grouped into four broad classes: (1) 

those that define a devices function; (2) those that define internal state variables; (3) those that 

define constraints; and (4) those that relate VHDL data structures to formal representations. 

2.2.1    VSPEC Clauses and Logic 

The general form of a VSPEC clause is a keyword followed by a logical sentence. The keywords 

indicate what requirement the logical sentence specifies. Each logical sentence is written in typed 

first-order predicate calculus with extensions to the logic that allow the use of sets and sequences in 

specifications. The logic follows the basic syntax of REFINE, the language used for system synthesis, 

to support easy translation and some degree of execution. 

There are six basic VSPEC clauses: 

- requires - specifies sufficient conditions on inputs and state for entity execution 

- ensures - specifies necessary conditions on outputs and state following entity execution 

- constrained by - specifies non-functional performance constraints 

- modifies - specifies what the entity may alter 

- based on - associates VHDL data types with REFINE definitions 
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- state - defines a collections of variables that represent the entity's internal state 

VSPEC clauses may only access variables and signals defined in an entity port, the state 

clause or quantified in a logical expression. VSPEC is strongly typed and all variables must have an 

associated type, including those bound by quantifiers. Although REFINE allows type inferencing, 

VSPEC does not. 

2.2.2    Functional Requirements 

The functional requirements of a VSPEC entity are defined using the requires and ensures 

clauses. The requires clause specifies a logical expression, I(x), that must be true for the entity 

to perform its operation. The ensures clause specifies necessary state conditions, 0(x, z), resulting 

from entity execution given a particular input. Formally, any architecture implementing an 

entity must obey the condition: 

Vx:D»I(x)^0{x,F(x)) (1) 

where D is the domain of the transform F(x) is the transformation performed by the architecture. 

The requires Clause 

The requires clause, J(x), is a logical expression defined over all ports, signals and variables that 

may provide input to the transform. I(x) is true when x is a valid input. I(x) is a precondition 

for entity execution. When it is true, the entity must produce valid output. 

The ensures Clause 

The ensures clause, 0(x, z), is a logical expression defined over all ports, signals and variables. 

0(x,z) is true when z is a valid output given x as input.  0{x, z) is a postcondition for entity 
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execution and states necessary conditions placed on entity outputs and state variables. 

2.2.3    Constraints 

Constraints express characteristics an entity must exhibit that are not a part of its function. For 

example, heat dissipation constraints frequently affect selection of valid designs, but heat is a side 

effect of the technology. It has little to do with the input and output relationships specified in the 

requires and ensures clauses. 

Although constraints do not affect function, they are critical in hardware system design. In 

VSPEC there are two sources of constraint. The first is the constrained by clause that specifies 

several performance constraints common in hardware design. The second is the modifies clause 

that limits what the entity can alter in performing its function. 

The constrained by Clause 

The constrained by clause is a conjunction of predefined variables and relations with fixed values. 

VSPEC currently supports providing constraint information for heat dissipation, area, clock speed, 

power consumption and pin-to-pin timing. To specify constraint, one chooses a constraint type 

and uses it in a relation. For example, to specify heat dissipation less than 1 watt and power 

consumption less than 10 watts, the logical sentence heat =< 1 and power =< 10 is included in 

the constrained by clause. 

Timing requires a somewhat more complicated representation. Here one specifies an interval 

between two pins, then relates that interval to a constant time. For example, (a<->b) =< 10 

specifies that the time between a signal arriving at port a and port b producing a signal must be 

less than 10. 
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The modifies Clause 

The modifies clause specifies a collection of ports, signals and variables that may be modified by 

the entity. The modifies clause indicates what effects and side effects are allowed. Only outputs 

may be specified in a modifies clause. Of particular interest is the ability to specify the direction 

of buffer type ports. 

2.2.4 Abstract Data Types 

The semantics of VHDL data types must be defined before reasoning about their properties is 

possible. Elemental data types such as integer and bit have definitions loaded as a part of the 

VSPEC system. Thus, when using a basic VHDL type, the semantics of that type are present by 

default. 

The based on Clause 

User defined data types such as arrays and records must be defined as a part of the definition process 

because they cannot be defined a priori. This is accomplished using the based on predicate. The 

logical expression defined in a based on clause defines the semantics of a user defined type. To 

support this specification process, VSPEC includes standard Schemas for defining sets, sequences, 

arrays and tuples. These Schemas are used in conjunction with parameter morphism to define 

associated VHDL types specific to user needs. 

2.2.5 System State 

The notion of system state is typically not supported directly by axiomatic specification techniques. 

A computation unit is defined by a transform that relates inputs to outputs. Thus, to include state 

in a specification it must be specified as both an input and an output of the transform. However, 
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specification of state-based systems is natural to hardware designers and suggesting that state 

representation be an input to the VHDL entity is not natural. Using the two-tiered specification 

approach, state can be managed by: (a) supporting the definition of local state variables; and (b) 

using state maintaining features of port signals. Instead of specifying a function that maps input 

signals defined in the port definition to outputs in the same port definition, specify a function that 

maps inputs and state maintaining objects to outputs and state maintaining objects. 

The state clause 

The state clause is a collection of variables that store state within a VSPEC entity. Like VHDL 

variables and signals, these variables maintain their values from one invocation of the entity to 

the next. All state variables are defined locally and are not visible outside the entity. 

Ports 

variables defined an entity's port definition may maintain their state. Variables of type buffer 

may be inputs or outputs and are not re-initialized unless a signal of some type is driving them. 

Variables of type out and inout also maintain their state. 

2.3    Generic Architectures in VSPEC 

VSPEC supports representation of high level, abstract architectures using the architecture con- 

struct from VHDL. No modifications or annotations are necessary - simply specify entity structures 

accessed by the architecture using VSPEC. 

Figure 3 represents a two component architecture for solving the element search problem. The 

search entity is identical to the one in Figure 2a which serves as the starting point for designing 

the system. The next step is creating a VHDL architecture that solves the problem specified by 

10 
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the VSPEC entity. In this example, architecture structure solves this problem by breaking it up 

into two sub-components: one which sorts the input and one which retrieves the proper element 

from the sorted list. This architecture was generated using the synthesis technique discussed in 

Section 3. The result of breaking the problem into two sub-components is two new VSPEC entities 

that describe the subcomponents. Notice that the combination of the functional and performance 

constraints of each sub-component meet the constraints specified by the search entity. The next 

step in the design process is to generate VHDL architectures for each of these sub-components. The 

behavior architecture is an example of a solution for the bin_search entity. 

2.4    VSPEC and Algebraic Specification 

Any VSPEC definition can be transformed into a formal definition. The form of this definition is 

an algebraic specification based on an extension of domain theories as defined in CYPRESS [18] and 

KIDS [20, 19]. The basic form of a domain theory is a tuple consisting of the function domain (D), 

range (Ä), input precondition (I(x : D)) and output postcondition (0{x : D,z : R)) commonly 

referred to as a DRIO model. The DRIO model for any VSPEC entity can be constructed using 

the following rules: 

D = d\ x d2 x • • • x dn where df. is the sort (defined by the based on clause) representing the type 

associated with an in, inout, or buffer ports, or a state variable 

R = n x T2 x ... x rm where r,- is the sort representing the type associated with an out, inout, 

or buffer port listed in the modifies clause, or a state variable 

I(x : D) = Iv(x : D) where Iv(x : D) is the logical sentence defined by the requires clause 

0(x : D,z : R) = Ov{x : D,z : R) where Ov(x : D,z : R) is the logical sentence defined by the 

ensures clause 

11 
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Additionally, constraints must be defined as a part of the algebraic statement. The simplest 

means of accomplishing this is to include predicates representing constraints in the output function 

of the DRIO. However, constraints are not functional. Specifying constraints in their own clause is 

an attempt to separate constraint from function. Additionally, constraints in their current form do 

not depend on variables defined in the entity1. Thus, constraints are added to the DRIO model 

through a specification extension that adds logical representations of constraints. Effectively, the 

DRIO model becomes a DRIOC model. 

C(ci : Ci,..., Cn : Cn) = Cv(ci : d,..., cn : C„) where ck is a constraint variable such as heat or 

area, Ck is a sort associated with a constraint variable and Cv is the logical expression defined 

in the constrained by clause 

With addition of constraints, the goal of the design activity becomes finding an architecture 

that performs the transform F : D ->• R such that: 

Vz :£./(*) ^O0r,F(z)) A Ctci,...,^) (2) 

Thus, the goal of the synthesis activity is generation of a transform mapping the current state 

and inputs into the next state and outputs such that the output condition and constraints are 

satisfied. 

3    System Synthesis 

The case-based reasoning model used by the synthesis system is based on the standard approach of 

retrieval, adaptation, and evaluation. In the following sections, each of these activities is described. 

*A more complex constraint model could certainly include variables and signals.  Our current constraint model 
does not allow this. 

12 
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The similarity metric, features and feature types are described followed by a description of the 

three stage retrieval process. Adaptation via rule application and by replacing case components is 

described next followed by a brief description of the evaluation process.2. 

Given a VSPEC specification and its DRIOC model equivalent, planning techniques apply to 

system synthesis. The general goal of planning is to accumulate a partially ordered bag of actions 

that achieve the end result. This goal is analogous to the design of general systems where one is 

searching for a collection of interconnected devices for solving a problem. Effectively, I and O define 

pre- and post-conditions for a component. In planning terms, this is identical to the description of a 

goal or plan action. Consider the goal of system synthesis described in Equation 1. This is exactly 

the goal of a planning system - given a pre-condition, find a sequence of actions that necessarily 

imply a desired post-condition. 

Although any number of planning techniques apply, case-based planning is discussed here. A 

method derived from the ASP-II[4] analysis planner and refined in the BENTON[2, 3] is applied. 

The ASP-II planner used case-based reasoning to synthesize simulation actions given characteristics 

described in a before clause (pre-condition) and an after clause (post-condition). ASP-II supports 

the replacement of failed actions in a plan using a technique called adaptation by re-planning. 

Adaptation by re-planning works by inferring a goal from the state change caused by a plan 

action. The system state is known before the action is executed from the post-condition of the 

preceding action and the system state after execution from the pre-condition of the following action. 

Thus, if an action or sequence of actions failed the goal of the action could be retrieved and used 

as a goal for a new planning process. 

In our case-based synthesis system, VHDL components are analogous to plan actions and VHDL 

2For a more formal description of the retrieval and adaptation processes, please refer to the BENTON case-based 
reasoning component [3] 
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architecture structures are analogous to composite plans. The DRIOC form of VSPEC require- 

ments expresses exactly what a plan action does - I(X) expresses a precondition and 0(x, z) 

expresses a post condition. Thus, VSPEC requirements can be used to generate goals for synthesis 

processes to replace components analogously to plan actions in ASP-II. 

3.1 Example Problem 

To demonstrate the case-based reasoning technique, synthesis of a VHDL component implementing 

a search system will be used as an example. Figure 4 represents the VSPEC requirements for the 

searching component.   This requirements specification states that a list of elements and a key 

are input with the element associated with the key output.  The requires clause states that no 

preconditions exist on the input set. (Note that the entity port definition assures inputs are of 

the correct type.)  The ensures clause specifies that if an element in the input array has a key 

value associated with k, that element is returned by the function. 

The VSPEC entity is parsed and the result is a DRIOC specification of the following form: 

D = seqence(element) x integer 
R = element 
I(x) = true 
0(x, z) = Ve : element • output = e <=> e 6 input A k = key(e) 
C = power < 10 

3.2 Cases 

Each stored case is a triple consisting of a problem description, feature set, and potential solution. 

The problem description is the DRIOC translation of the VSPEC requirements, the feature set is 

domain specific and derived from the DRIOC, and the solution is a VHDL specification fragment 

annotated with VSPEC. satisfying the problem description. The case-base is a set of cases and 

associated indexes used to retrieve cases efficiently. 
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3.3    Retrieval and Similarity 

When presented with a new problem, the case-based synthesis process begins its problem solving 

activity by retrieving one or more similar cases from the case-base. Retrieval is a three step process 

of: (a) generating a feature set for the new problem; (b) retrieving functionally correct solutions; 

and (c) determining the most similar functionally correct solution. 

3.3.1    Features and Feature Types 

A feature type represents information common to features representing the same characteristic. A 

set of feature types exists for each case-base. Each feature type has a unique name and describes 

how to compare features of that type, the relative importance of the feature, and how to generate 

the feature from a problem description. 

The following is the feature type definition for the input-types feature. The comparison 

function is bag-equal, its relative weight is 1.0, and generate-input-types constructs features 

of this type from problems. 

<'input-types,   'bag-equal, 1.0,   'generate-input-types> 

Sets of features describe problems and facilitate retrieval and comparison of problems. A feature 

is an attribute value pair where the attribute names a unique feature type and the value is the 

feature value. A feature is legal if and only if it names a known type. An example of a legal 

input-types feature for an entity accepting an integer and a sequence of integers as inputs would 

be: 

<'input-types, [''integer'',''seq(element) ' ']> 

Features and feature types are defined based on the VSPEC descriptions. A VSPEC description 

is a collection of logical expressions and argument list definitions when converted.   The goal of 
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the synthesis problem is finding a component whose behaviof and performance meet the VSPEC 

requirements. In case-based reasoning terms, this translates to finding a component whose VSPEC 

description is similar to problem requirements and adapting that solution to the specific problem. 

Because VSPEC is formal, the DRIOC elements could be used as features and logical implication 

used as a matching function - when corresponding elements of two DRIOC descriptions are logically 

equivalent, they match. 

The logical equivalence approach to comparing VSPEC descriptions is appealing because feature 

generation is trivial, the features are general to any domain using VSPEC descriptions, and the 

comparison is formal. However, logical inference is computationally impractical when considering 

large case-bases. 

The solution is defining features for the specific domain of application, generating those features 

from VSPEC and using these features for comparison purposes. Generality and formal comparison 

are lost with this method. However, the efficiency gain from using simple comparisons makes this 

system far more pragmatic. 

A collection of feature types for the DSP domain is currently under development for this system. 

Following is a short list of some feature types used in further examples: 

input-types sequence of input types output-types sequence of output types 
heat heat dissipation power power consumption 
fft Computes FFT ordered(x) x is ordered 
permute (x,y) x is a permutation of y search is a search system 

3.3.2    Feature Generation 

When a new problem is presented to the synthesis system, a set of features is generated. The 

feature generation function from each feature type is applied to the new problem and the resulting 

features comprise the problem's feature set. Feature generation functions are represented as REPINE 

functions. The set of generation functions are maintained in a list and applied to each new problem 
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in a predetermined order to avoid the need for conflict resolution. 

The following is the function that generates the input-types feature. It returns an attribute 

value pair consisting of the input-types feature name and the value stored in the domain slot of 

the problem description. 

function generate-input-types (p  : problem)   :  feature = 
<'input-types,p.domain>; 

Following is a subset of features generated for the search problem. 

{<input-types,   [sequence(element),integer]>, 
<output-types,  [element]>, 
<power, < <=,10», 
<search, true>, 
<fft, false>, 
<ordered, false>, 

The first two features represent D and R and indicate what the retrieved case must input and 

output. The comparison function for each is bag equality indicating the arity and input and output 

types must match. 

Other features are defined based on I and O. No features are generated from I because it 

is always true. Effectively, there are no input preconditions and the component should work on 

all inputs of the correct type. The output postcondition, O, does provide information about the 

desired results of applying this component by defining a search routine. 

Finally, features are generated from C. The constrained by clause must be a conjunction 

of simple relations. Each of these relations forms a feature. The type of each feature names the 

constraint and the relation and value form a pair specifying the value. Simple interval arithmetic 

is used to compare specific feature values. 
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3.3.3    Problem Similarity 

In a case-based reasoning system, problem similarity indicates the level of confidence that two 

problems share a solution. This similarity measure is based on two premises. First, the similarity is 

proportional to the number of common characteristics with matching values. Second, the premise 

that similarity is proportional to the amount of information involved in the comparison. 

The similarity measure implements these premises as raw similarity and the possible match 

ratio respectively. Raw similarity is a measure of how many shared features match. Two features 

match if they are of the same type and their values are equal based on the feature type's comparison 

function. The possible match ratio is a measure of how many feature types are shared by the two 

feature sets. A feature or feature type is shared by two features sets if there is a feature of that 

type in both sets. Given two sets of features, similarity is the product of the raw similarity value 

and the possible match ratio. 

Raw Similarity 

Given two feature sets, raw similarity is the ratio of the sum of weights from matching features to 

the sum of weights from shared features. Qualitatively, raw similarity determines the weighted per- 

centage of features that match. Formally, raw similarity is defined as the sum weights of matching 

features divided by the sum of the weights of all shared feature types. 

A DontCare value in a feature's value slot represents a situation when a feature is present, 

but its exact value does not matter. More specifically, when the feature contains no useful in- 

formation for determining problem similarity or is not known. The DontCare feature allows the 

system to distinguish between situations where a feature does not match and when a feature match 

determination cannot be made. 

When a comparison between features of the same type involves a DontCare value, a match 
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always occurs. However, to indicate the inexact nature of the match, the weight used to determine 

similarity is decreased. In this system, the match is degraded by multiplying the weight from the 

feature type description by 0.95. Thus, the weight used in the sum of comparison results for raw 

similarity is 0.95 of its original value. The weight used for calculating the total possible weight is 

the original weight value. 

An example of how the DontCare values are used arises when retrieving objects where con- 

straints are not specified. It may be that specific values for a particular constraint are not known 

because constituent components are not yet described in enough detail. Given a choice between 

such a component and a component where the constraint is know to be violated, the potential 

solution should be preferred. By using the DontCare feature value instead of a mismatch value or 

leaving the feature out, the possible solution is preferred over the solution known to be incorrect. 

If a solution were known to be correct, it would be preferred over the potential solution. 

The Possible Match Ratio 

The second component of the similarity value, the possible match ratio, is the ratio of the number of 

shared features to the total number of features defined for the case being considered. The objective 

of the possible match ratio is to implement specificity in the similarity metric. Given that two cases 

have equivalent raw similarity values with respect to the current problem, the possible match ratio 

will prefer the case matching the highest percentage of features, thus involving more information 

in the comparison. 

In addition to preferring more information, the possible match ratio allows loose definition of 

solution categories. Consider two problems, one described by features specifying input precondi- 

tions and output post conditions, and the other described by features specifying representation 

characteristics. The first feature set describes a problem best solved using a data transform while 
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the second a problem best solved using a data type. It is conceivable that these two feature sets 

could share a small number of feature types. If those features match, the raw similarity metric has 

no means of determining that most features cannot be compared and would return a deceptively 

high similarity value. The possible match ratio differentiates between these two solution categories 

because few feature types are shared by the feature sets. 

Similarity 

The final similarity value is the product of the raw similarity value and the possible match ratio. 

Table 1 shows the results of comparing two sets of features with the problem's feature set. Note 

that the second set match is lower due to mismatch of a power consumption feature. 

3.3.4    Functional Similarity 

The simplest approach to retrieval is calculating a similarity value for each element of the case-based 

with respect to the problem and choosing the most similar case. The result is a table much like 

Table 1 extended for the entire case-base. This is not a practical approach for large case-bases due 

to the complexity of similarity calculation. Thus, solutions matching critical features are retrieved 

and then ordered using the complete similarity metric. 

To accomplish this, the retrieval system maintains indexes for features representing functional 

characteristics. These features are referred to as important features. Following generation of of the 

problem feature set, important features are extracted. Indexes statically maintained by the retrieval 

system are used to retrieve a set of cases whose important features match problem features exactly. 

Static indexes are created when a case is added to the case-base. Feature values are used as 

retrieval keys and cases with features that match a particular value can be retrieved directly without 

a similarity calculation. Important features include input-types, output-types and some other 
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features computed from functional requirements. In general, features computed from constraints are 

not important features, but serve to choose a best solution from all those satisfying the functional 

requirements. 

All features are used to determine final similarity between the initially retrieved set and the 

problem. Because all potential cases match with respect to important features, features representing 

other constraints determine the functionally similar case representing is the best solution. The case 

returned by the retrieval process is the case from the initially retrieved set whose similarity with 

the problem is maximal. 

The two stage retrieval process results from two observations. First, the belief that design is a 

process of finding a set of functionally correct solutions, then using problem constraints to select 

from them an optimal solution. Important features indicate the primary function of the artifact. 

The remaining features describe the constraints the solution exists under. Second, initial retrieval 

is achieved using statically maintained indexes, without the cost of calculating similarity. Similarity 

is calculated over this subset of the original case-base. This dramatically reduces retrieval cost with 

respect to a brute force approach that calculates similarity for every element in the case-base. 

Consider the feature sets generated for linear search and batch sequential search shown in 

Figure 5. Using only important features, these two cases are identical. They both search arrays of 

elements and return the indicated element if found. Thus, the initial retrieval would return both, 

but eliminate cases for sorting, FFTs, and cases where range and domain are not matches. 

Although the two solutions are functionally equivalent, the power feature representing a con- 

straint differs. In the linear search entity the power constraint from the original specification 

is violated while in the batch sequential entity the power is not known. (See Table 1 for exact 

similarity calculations.) Thus, the similarity of the linear search case is lessened and the batch 

sequential option is preferred. The power constraint is not verifiable, but unlike the linear search 
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option, it is not known that the constraint is violated. This is an example of using the DontCare 

feature value to indicate a situation between a perfect match and a mismatch. 

The batch sequential search architecture returned is the same as the architecture shown in 

Figure 3. Note that a behavioral specification of the bin_search entity exists, however no spec- 

ification for the sort entity exists aside from the VSPEC description. This represents a complete 

specification of the problem and can be viewed as a solution. However, it is possible to repeat the 

process and attempt to synthesize a specific component for the sort description. This is achieved 

during adaptation by repeating the synthesis process using requirements from the sort description. 

3.4    Adaptation 

The most similar case found by the retrieval process is modified to fit the current problem by 

the adaptation process. Adaptation employs two independent methods. The first is application 

of adaptation rules. The second is replacement of case parts by generating a sub-problem and 

recursively calling the case-based reasoner. 

3.4.1    Rule-Based Adaptation 

An adaptation rule is a REFINE transform. The antecedent is a predicate accepting three arguments: 

the problem being solved, the problem solved by the case, and the specification fragment being 

adapted. The consequent is a REPINE predicate accepting the same arguments that implements 

the change to the specification fragment. A list of adaptation rules is maintained by the system. 

Each rule is evaluated during the first stage of adaptation. Conflict resolution is achieved using a 

static ordering based entirely on the order rules exist in the rule-base. 

VHDL and VSPEC components are stored using an object-based abstract syntax tree common 

to REFINE parsing activities [1]. This representation makes application of adaptation rules much 
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easier because the object model is manipulated rather than plain text. The advantage is that 

adaptation rules need not parse text to perform their operations. Retrieving the source code from 

the object model simply requires calling a single print routine, thus there is no loss of solution 

generality. 

An example of a frequently used adaptation rule does variable substitution. This function 

gathers all identifiers and references from an entity structure and applies a transformation to 

them. In a semantically correct abstract syntax tree, each variable has a definition and several 

references. To change the name of a variable, the name must be changed at the definition point 

and each reference point. This transformation is called on each node in the abstract syntax tree. If 

a node is an identifier reference, it checks the identifier name and changes those matching the old 

variable name to the new variable name. Similarly, it finds the identifier definition and changes its 

name to the new name. Without the abstract syntax tree, the source VSPEC would require lexical 

and syntactic analysis to perform this operation. 

function subst-variable (the-entity: entity,old-name: symbol,new-name: symbol) 
let  (idents = entity-port(the-entity), 

idents-refs = descendants-of-class(the-entity,'ident-ref)) 
ref  in idents-refs & 
ident-name(ref) = old-name ft 

—> 
ident-name(ref) = new-name; 
ref in idents ft 
ident-name(ref) = old-name 

—> 
ident-name(ref) = new-name 

3.4.2    Sub-Problem Based Adaptation 

The second adaptation method is case element replacement. This involves defining a function 

or goal associated with the fragment and using the internal environment defined by the case to 

constrain possible solutions [6]. 
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Case fragment replacement is used to replace a portion of a structural specification architecture. 

Because a structural architecture is a collection of components, identification of a case fragment 

for replacement is identifying an appropriate component. To define a function for the case fragment, 

the reasoning process uses the difference between the system state before and after the execution 

of the component action. The reasoning process assumes that the component caused the difference 

intentionally. Thus, the difference defines what must be the goal of the component. Constraints 

defined by preconditions and the external environment together defined constraints on the new 

synthesis problem. The difference between the system state before and after component execution 

is obtained from either the VSPEC representation of the component, or from VSPEC defining outputs 

of systems providing input to the component and the preconditions of components receiving output. 

The result is a new problem whose solution can replace the original.3 

Replacing components also may occur when instantiating a general architecture. Recall that 

entity structures referenced by an architecture may be defined only using VSPEC and need not 

have a VHDL implementation. Thus, the requirements of the component are expressed without the 

specifics of the implementation. The VSPEC is transformed into a problem description and a VHDL 

component satisfying the requirements results. 

As an example of case component replacement, consider synthesis of an architecture for the 

sort entity. The DRIOC form of the VSPEC is as follows: 

D = seqence(element) x integer 

R = element 

I(x) = true 

0(x, z) = Ve : element • output = e<^eG input Ak = key(e) 

C = power < 10 

3For a detailed discussion of this adaptation scheme, please see [4] 
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The feature set associated with this problem is similar to the feature set for the original search 

problem, but no constraints are specified and feature values are changed appropriately. 

{<input-types,   [sequence(element)] >, 
<output-types,   [sequence(element)]>, 
<power, DontCare>, 
<search, false>, 
<fft, false>, 
<ordered, true>, 
<permutation, true>, 

The retrieval activity here is identical to retrieval of the batch sequential architecture and the 

discussion will not be repeated. Any appropriate sorting architecture may be retrieved given the 

current set of features. For this example, assume a quicksort entity is retrieved described by the 

VSPEC entity shown in Figure 6. 

The resulting VHDL description is the batch sequential architecture combined with the quicksort 

architectureThis represents a new solution at a lower level of abstraction. Before it is accepted 

as a solution, the new system must be evaluated with respect to constraints. 

3.5    Evaluation 

Following synthesis of the potential solution, a case-based reasoner attempts to evaluate a solution 

to determine its fitness. The evaluation process in this case-based reasoning system exclusively 

involves determining if the proposed solution meets specified constraints. 

Recall that the constrained by clause defines constraints the system must satisfy. These 

constraints are translated into features for the retrieval process. If the solution is monolithic, 

constraint satisfaction is a simple comparison of C(cy... cn) from the problem description and 

the proposed solution. However, when the solution is a collection of components, more complex 

constraint verification must be applied. 
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Constraint verification is achieved by specifying constraint behavior and transforming that be- 

havioral description into REFINE theories. Given the constraints from the high level specification 

and a set of constraints from component constraints, the REFINE theories determine if the compo- 

sition of component constraints continue to meet the higher level constraints. Theories currently 

exist in this system to evaluate heat dissipation, power consumption, clock speed, pin-to-pin timing, 

and area. By checking performance constraints in the earliest stages of synthesis, such issues are 

managed concurrently with the synthesis activities. 

With the batch sequential search system completed, constraints on the subcomponents of the 

batch sequential search algorithm are now known. The theory of power consumption this system 

uses states that the total power used by a device is equal to the sum of the power used by the device's 

components. Instantiated for this problem, the total power used by bin_search and quicksort 

must be less than 10 watts. The constraints on the components say that they consume no more 

than 4 watts and no more than 5 watts respectively. Using interval arithmetic, the sum is no more 

than 9 watts and the 10 watt constraint is met. If a constraint violation is discovered, the offending 

potential solution is discarded. The reasoning process is repeated in an attempt to find a better 

solution. Alternative approaches include simply reporting the constraint violation or involving the 

user in the decision process. 

Evaluation of constraints occurs both when retrieving and evaluating potential solutions. At 

each stage of the synthesis activity, non-functional requirements are evaluated concurrently with 

functional requirements. Thus implementing a simple concurrent engineering synthesis process. 
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4    Limitations 

Early experimentation indicates this synthesis approach is effective using small case-bases in rea- 

sonably restricted domains. Currently, this approach is being extended to solve co-design problems 

and the initial case-based is being extended. Several limitations, although not fatal, have been 

identified. 

4.1    Case-Base Construction 

The greatest potential limitation to this approach is case-base construction. The system cannot use 

a component that is not defined in its case-base, implying that a large case-base must be developed, 

or individual case-bases must be developed for each domain. This requires identification of a core 

set of components with VSPEC annotations. 

VHDL libraries currently exist and are being aggressively constructed in the DSP domain. How- 

ever, these libraries are not annotated with VSPEC, thus forcing back annotation by hand or using 

an automated approach. Hand annotation is time consuming and difficult. Automated annotation 

is not practical at this time. 

An alternative approach is implementation of other synthesis techniques that generate inno- 

vative solutions and use these approaches to augment the case-base. Currently this approach is 

being pursued through integration with the KIDS software synthesis environment and transforma- 

tion based synthesis techniques. New solutions are generated when necessary and old solutions 

are re-used when possible. It should be noted that although they do extend the case-base, other 

techniques are also limited by their synthesis knowledge. 
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4.2 Features and Feature Generation 

Each synthesis domain requires definition of feature types and feature generation functions. Once 

cases are identified, they must be indexed and stored in the case-base. As with case-based con- 

struction, a universal set of features can be defined, or individual feature sets can be developed for 

each domain. The second solution is the obvious choice given the trade-off between computational 

complexity and brittleness caused by domain specific features. Without exploiting some domain 

specific information, retrieval become computationally prohibitive. 

4.3 Solution Correctness 

Currently there is no guarantee that any given solution is correct. If a VHDL solution is synthe- 

■ sized, simulation is available for some limited correctness evaluation. An approach currently being 

developed is to use a theorem proving approach on the VSPEC description. The limitations of such 

an approach as a retrieval technique were presented earlier. However, once a solution is found, 

the problem is reduced to checking one solution. This still requires pragmatic, efficient theorem 

proving techniques to ultimately be practical. 

5    Related Work 

As VSPEC is a Larch interface language for VHDL it borrows from the construction of other interface 

languages. Specifically, VSPEC is styled after the LM3 Larch interface language for Modula-3 [10]. 

Odyssey Research Associates is currently developing an alternative Larch interface language for 

VHDL [9]. This language does not support representation of constraints other than time and is 

targeted for formal analysis rather than synthesis. They are attempting to generate a formal 

semantics for VHDL using LSL for proving correctness. ORA's interface language also differs in its 
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implementation of time. An absolute time based temporal logic is used in specifying the function 

of an entity. Thus one can specify that a predicate becomes true at a specific time using the 

notation "P(x)@i". The VSPEC notation specifies time intervals as constraints independent of 

system function. 

Another attempt to annotate VHDL is VAL [5]. VAL annotates all aspects of the VHDL design. All 

signals in the namespace of the VHDL representation are in the namespace of the VAL annotation. 

Thus, VAL annotates specific VHDL designs rather than represent requirements. ORA's interface 

language is similar in this respect, but does support separate requirements definitions. 

Although VHDL is a hardware synthesis language, synthesis of VHDL designs is a software syn- 

thesis activity. Viewing software synthesis as a planning activity was proposed in the KBSA ef- 

fort [16, 22, 17] and used heavily in the BENTON [2] system. Both systems use plans to represent 

and control software synthesis activities. In this system, plans are not explicitly used and represent 

only the structure of solutions. Other attempts at case-based software design include CEASAR [7], 

analogical reuse [11, 12], and work in derivational analogy [13]. Some also view reuse work by 

Prieto-Diaz [15] as case-based reasoning, however it is not a heuristic approach and involves no 

adaptation of final solutions. 

6    Future Work 

Current VSPEC research involves pursuing domain specific support for specification activities and 

support for formal synthesis. An important aspect of any Larch language is its associated handbook. 

A handbook is simply a collection of reusable theories defined in the shared language. Handbook 

theories represent commonly used structures, algorithms and characteristics as well as domain spe- 

cific information. For VHDL theories to represent standard VHDL types, low level logic functions and 
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conversion routines are being implemented. In addition, libraries to support specifications involving 

signal attributes such as event, stable, and delay are under development. Theories for pin-to- 

pin timing, heat dissipation, power consumption, area and clock speed have been implemented to 

support constraint checking during the design process. 

The isomorphic relationship between VSPEC and algebraic specifications is being used to exploit 

work in formal synthesis, specifically, developing morphisms between algorithms [21]. This involves 

development and implementation of theories useful in constructing multicomponent systems such 

as the batch sequential search algorithm appearing earlier in this paper. 

Finally, formal evaluation of specifications and solutions is being explored. Although it may 

be impractical to use formal inference in the retrieval process, once a solution is found it is a 

practical verification tool. Given VSPEC descriptions of both the problem and solution, various 

levels of satisfaction may be evaluated. Logical equivalence is the ideal comparison, however, logical 

implication may be acceptable. Even more interesting is the use of modal logics and antecedent 

discovery to correct incomplete specifications or restrict solutions. 
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entity search is 

port (input: in array of element; 

k: in keytype; 

output: out element); 

end search; 

element 
array 

key 

search 

??? 
_ 

: *■   element 

a) b) 

Figure 1: A VHDL entity describing a record search. 
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entity search is 

port (input: in array of element; 

k: in keytype; 

output: out element); 
modifies output; 

requires true; 

ensures 

output = e <=> key(e)=k and 

e in input 
constrained by 

power =< 5 and 

area =< .3 

end search; 

H 

search 
_ i 

element          ~ 
y F(ln) «■rriw 

key     —  » ' ,   x   n 

t      t 
Vcc     Clk 

Time 

element 

a) b) 

Figure 2: A VSPEC entity describing a record search. 
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Feature Name Problem Linear Search Batch Sequential 
goal entity entity entity 
input-types [integer,seq(element)] [integer,seq(element) ] [integer,seq(element)] 
output-types [element] [element] [element] 
fft false false false 
ordered(z) DontCare DontCare DontCare 
permute(x,z) DontCare DontCare DontCare 
search true true true 
heat DontCare DontCare DontCare 
power «=,10> DontCare «=,11> 
area DontCare DontCare DontCare 
Possible Match 1.0 1.0 1.0 
Raw Similarity 1.0 0.978 0.975 
Similarity 1.0 0.978 0.975 

Table 1:  Table showing a subset of features generated for the search problem and 2 potential 
solutions. The bottom rows indicate calculated similarity values. Assume all weights are 1. 
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entity search is 

port (input: in array of element; 

k: in keytype; 

output: out element); 

modifies output; 

requires true; 

ensures 

output = e <=> key(e)=k and 

e in input 
constrained by 

power =< 5 and 

area =< .3 

end search; 

architecture structure of search is 
component sorter 

port (input: in array of element; 

output: out array of element); 
component bin_search 

port (input: in array of element; 

key: in keytype; 

value: out element); 

signal sorted_array: array of element; 
begin 

sort_instant: sorter 

port map (input=>in_array; 
output=>sorted_array); 

search_instant: bin_search 
port map (input=>sorted_array; 

k=>in_key; 

value=>out_value); 
end bat-seq; 

entity bin_search is 

port (input: buffer array of element; 
k: in keytype; 

value: out element); 

modifies out; 

requires sorted(input); 

ensures 

(fa e:element) 

output = e <=> key(e)=k and 

e in input; 
constrained by 

power <= 3 and 

area <= .2; 

end bin_search; 

architecture behavior of bin_search is 
begin 

pi: process 

— VHDL representation of a 

— binary search over ordered 

— arrays 

end process; 

end behavior; 

entity sort is 

port (input: in array of element; 

output: out array of element); 
modifies output; 

ensures bag(input) = bag(output) and 

sorted(output); 
constrained by 

power <= 2 and 

area <= .1; 
end sort; 

Figure 3: VSPEC representation of a search architecture using a batch sequential approach.  The 
original list is sorted and a binary search finds the desired object from the resulting list. 
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entity search is 
port  (list:  in array of element; 

k:   in integer; 
output:  out element); 

modifies output; 
requires true; 
ensures 

(fa e:element) 
(output = e) <=> 

(e in input and 
k = key(e)); 

constrained by 
power <=  10; 

end example; 

Figure 4: VSPEC requirements for a searching component. 

{<input-types,   [sequence(element),integer] > , {<input-types,   [sequence(element).integer]>, 
<output-types,   [element]>, <output-types,   [element]>, 
<power, DontCare>, <power, <=,11», 
<search, true>, <search, true>, 
<fft, false>, <fft, false>, 
<ordered, false>, <ordered, false>, 
...} ...} 

a) Features from batch sequential search b) Features from linear search 

Figure 5: Features from linear and batch sequential search returned by the retrieval algorithm. 

entity quicksort is architecture behavior of quicksort is 
port  (input  :  in array of element; begin 

output  :  out array of element) pi: process 
modifies output; — VHDL description of a 
requires true; — quicksort algorithm 
ensures end process; 

bag(input)=bag(output) and end behavior; 
sorted(output); 

constrained by 
power <= 5; 

end quicksort; 

Figure 6: quicksort entity with VSPEC annotations and behavioral VHDL description. 
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Abstract 

Systems engineering is the process of looking at many 
facets of an emerging design. A systems engineer is re- 
quired to examine and reconcile many information sources 
when making high level design decisions. Although VHDL 
is an excellent digital system description language, it lacks 
flexibility to address all systems level issues. Digital system 
behavior and structure are effectively handled, but other 
facets are not. VSPEC represents one attempt to model other 
facets in the VHDL framework. It adds functional require^ 
ment and performance constraint modeling to the VHDL- 
based design process. This paper first describes VSPEC and 
its interaction with VHDL. It argues that VSPEC is an excel- 
lent first step towards a systems level description language. 
However, other facets are needed to model complete sys- 
tems. A language structure for representing these facets is 
proposed and a potential source for a semantic definition is 
identified. 

1   Introduction 

Systems level design is characterized by the need to deal 
with heterogeneity during the design process. Heterogene- 
ity arises from two sources: (I) modeling components using 
different computational models; and (ii) modeling differ- 
ent component and system facets. Different system com- 
ponents are best modeled using different basic semantic 
models. Digital electronic, analog electronic, optical, and 
MEMS components all have different underlying mathe- 
matical domain models. Like heterogeneous components, 

* Support for this work was provided in part by the Advanced Research 
Projects Agency and monitored by Wright Labs under the RASSP Tech- 
nology Program, contract number F33615-93-C-1316 

multiple facets of the same component require different un- 
derlying semantic models. Electromagnetic, analog, digital 
and constraint facets again have different underlying math- 
ematical domain models. Further, different models may be 
used for the same facet under different circumstances. 

lb address the systems level design process, VHDL must 
be extended to include: (i) multiple modeling paradigms 
for different component facets; (ii) multiple modeling 
paradigms for different component domains; and (iii) a 
means for moving information between system represen- 
tations. Multiple modeling paradigms supports integrated 
modeling. Moving information between system repre- 
sentations supports using multiple semantic models with- 
out forcing a single model. Interestingly, VHDL provides 
syntactic support for multiple modeling paradigms. The 
entity/architecture model supports defining both 
structural and behavioral models for me same component. 
This basic architecture has been used to extend VHDL to the 
analog domain and to define constraint and requirements 
models. 

Moving information between semantic models presents 
a more difficult problem Effectively, the VHDL semantics 
must be extended. Goguen's model of institutions [6] can 
be used as a basis for such modeling. Using institutions, se- 
mantic domains are denned as categories and functors used 
to define when information from one domain is valid in an- 
other. 

This paper presents existing efforts to move VHDL to the 
systems level. First, a brief overview of VSPEC is presented. 
VSPEC is an interface specification language for VHDL that 
represents an initial attempt to model multiple component 
facets at the requirements level. Second, the model asso- 
ciating an entity with one or more architecture is 
extended to provide a multi-faceted model. As an example, 
the VSPEC requirements and constraint models are repre- 
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seated. The paper concludes by describing open semantic 
issues and problems that must be addressed. 

2   VSPEC-A First Step 

VHDL provides users with a means for modeling both the 
behavior and structure of a digital system. It provides users 
with an operational language for describing the behavior of 
a component. This language subset, referred to as behav- 
ioral VHDL, allows users to describe data transforms and 
control structures for components using a programming lan- 
guage style syntax, VHDL also provides users with a declar- 
ative language for describing the structure of a system This 
language, referred to as structural VHDL, allows users to de- 
scribe interconnections between components using a simple 
net list-based module interconnect language. 

Using behavioral and structural architectures of 
the same component allows VHDL users to model two facets 
of components and systems: function and structure. Thus, 
a user might provide a high level, black-box behavioral de- 
scription and use that description as a basis for refinement 
into a structural system decomposition. Such activities are 
common in top-down design processes making these facets 
and their interaction quite useful to systems designers. 

Behavioral and structure VHDL share a common 
simulation-based semantics that allows information from 
one facet to be visible in the other. More specifically, the 
results of simulating structural and behavioral representa- 
tions of a component can be directly compared. Thus, de- 
signers are able to evaluate the results of design iterations 
by simulating and comparing results. 

Although VHDL has excellent operational specification 
capabilities, their application during the design process is 
limited. One limitation noted m bur research activities is at 
the abstract requirements specification level Specifically: 
(i) VHDL'S operational semantics are not suitable for ab- 
stract functional requirements; and (ii) VHDL provides no 
means for describing performance requirements. These two 
information classes form important information facets use- 
ful in the design process, VSPEC is an initial attempt to 
address these facets in the context of VHDL. 

2.1   An Example 

VSPEC uses a modified axiomatic specification technique 
for modeling a component's function and performance re- 
quirements A pre- and post-condition are defined to in- 
dicate: (i) what must be true in the current state; and (ii) 
what must be true in the next state. This pre- and post- 
condition follow the traditional axiomatic semantics pre- 
sented by Hoare [9] and are implemented using a Larch 
Interface Language approach [8]. This axiomatic specifi- 
cation is augmented with ah activation condition indicating 

what circumstances cause the component to activate. The 
activation condition is needed because of the concurrent na- 
ture of VHDL components in contrast to the serial nature of 
software components. 

The axiomatic specification approach is further modified 
to describe performance requirements. Such performance 
requirements are modeled using a simple declarative se- 
mantics to express relations over constraint variables. They 
are effectively invariants with respect to the axiomatic func- 
tional requirements. 

To understand how VSPEC defines requirements and con- 
straints, an example of a simple search component is pre- 
sented in Figure 1. This component accepts an array of el- 
ements and a key and returns the array element associated 
with that key. Changing the value of either the key input or 
the array to be searched causes the component to activate. 

package search_types is 
type E is mutable; 
type K is mutable; 
type E_array is array (integer range O) of E; 

end search_types; 

use work.search_types; 
entity search is port 

(input: in E_array ; 
Jc: in K; 
output: out E); 

/'■■  includes KeyToElement (E, K) ; 
includes Area, Power, Frequency; 
modifies output; 
sensitive to 
k'event or input'event; 

requires true; 
ensures forall e: E 

((output'post = e) iff 
(key(e)=k 
and e £ input)); 

: : constrained by 
area < (3 urn * 5 um) 
and power < 10 mW 
and clock_frequency < 50 MHz; 

end search; 

KeyToElement(E,K) 
introduces 

key: E —>  K 

trait 

Figure 1. An example component defining re- 
quirements for a simple search component. 

2.2   Functional Requirements 

The basic specification model used for VSPEC functional 
requirements is a state machine.  Figure 3 represents in- 
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Figure  2.  A graphical  representation  of 
VSPEC information representation. 

formation defined by a VSPEC component. Using the ax- 
iomatic style, a state machine is specified. Pre-conditions 
and post-conditions define the output and next state func- 
tions while entity ports and VSPEC state variables define 
component state. 

entity E            i 

input   n X p. F(x,s) _ 
—&* 

Z | 
ports 

L-     s     •* 

output 
ports 

Figure 3. State-based model of functional 
specification. 

Functional requirements are modeled using the activa- 
tion condition, pre-condition and post-condition. These 
are specified in the sensitive to, requires, and 
ensures clauses,respectively. The requires clausede- 
fines a pre-condition that must be true in the current state for 
the component to execute correctly. The ensures clause 
defines a post-condition the component must make true in 
the next state given the pre-condition is true in the current 
state. Given that x is the collection of entity ports and 
VSPEC state variables providing input or state and z is the 
collection of entityports and VSPEC state variables pro- 
viding output or next state, the relationship defined by the 
requires and ensures clauses can be defined as: 

Wvrequires(äf) =>■ 3z • er\sures(x,z)      (1) 

The axiomatic specifications define the data transforma- 
tion performed by the component. These specifications de- 
fine requirements on how the component transforms data 
by defining relations between inputs, current state and out- 
puts. Specifically, any implementation of these require- 
ments, F{x), must provide a witness for z that satisifies the 
requirements. Skolemizing Equation 1 results in the follow- 
ing correctness condition for the data transformation: 

V£- requires(:r) =>• ensures{x, F(z))      (2) 

: Although simple, the importance of this relationship is 
the connection it provides between the requirements defined 
by VSPEC and the execution of a VHDL implementation. 
Given only these requirements, any VHDL implementation 
of F(x) is a correctimpiementaticm. Thus, the requirements 
facet is connected semantically to the behavioral or struc- 
tural facet. Further, the requirements facet could be associ- 
ated with a test facet or other facet defined for a component. 

The ensures and requires clauses of the example 
search component (Figure 1) define the following ax- 
iomatic requirements: 

rÜinput: Earray, k : K ■ true =$> Ve : £, -^output: E ■    (3) 
output = e & key(e) = k A e € input 

Simplifying the implication via implication elmination 
yields: 

fNinput: Earray, k:K,e:E, -Boutput: E- (4) 
output = e o- key{e) = k A e € input 

The requirement defined in Equation 4 states that an out- 
put of this component is correct if and only if: (i) the output 
is in the input set; and (ii) the key associated with the out- 
put is equal to the input key. Any component meeting this 
requirement is potentially a solution to «he defined problem 
Note that using the declarative representation, requirements 
are stated directly rather than identifying a specific candi- 
date solution. 

The activation condition defined inthesensit i ve t o 
clause defines when a component becomes active. Like the 
pre-condition, the activation condition must be true for the 
component to function. If the pre-condition is false, the 
component's behavior is undefined. In contrast, if the activi- 
ation condition is false the component maintains its current 
state. The activiation condition models events that cause the 
component to perform its task. 
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When components are interconnected, activation condi- 
tions model interaction between components. Activation 
conditions are defined over the same symbol set as pre- 
conditions. They monitor inputs and state to determine 
when the component should perform its data transform. 
When inputs are connected to outputs from other compo- 
nents or inputs from outside the system control is com- 
municated between components. Activation conditions are 
modeled using a process algebra. Process algebras are de- 
signed specifically to model reactive systems and suit the 
semantic needs of activation conditions nicely. Specifically, 
VSPEC activatcion conditions are modeled using CSP [10]. 

Each VSPEC entity is modeled as a CSP process. The 
alphabet of each process' is the set of system states where 
its associated activation condition is true. By definition, the 
CSP process ignores any symbol not in its alphabet. Thus, 
any state where the component is not active is ignored by 
the component. 

Given an activation condition A(x), the set of states 
where 4 is active is defined as *A = {s : S | A(s)}. Using 
i&A the process P associated with a VSPEC component is 
defined loosely as:1 

P8 = e : «^ -> Ps> (5) 
where s and s' are the current and next states and satisfy 

the axiomatic requirements. Briefly, the notation indicates 
that a process, P in state s waits for an event e from * A- 
Because *A only contains states where the activation con- 
dition is true, P will effectively ignore all other states. For 
any e in *^, a process P in state s' results. If it is known 
that some function F satisfies the axiomatic requirements, 
then the previous equation can be rewritten as: 

Ps = e : *, mp (6) 

Note that even within VSPEC 's functional modeling com- 
ponent, two facets exist. Specifically, the axiomatic model 
of data transform and the process algebra model of control. 
In the semantics of VSPEC, these two facets communicate 
by sharing a common definition in the Larch Shared Lan- 
guage [8]. 

The sesitive to clause from the search compo- 
nent (Figure 1) defines the following activation condition: 

k'event V input'event (7) 
Remwmg the syntactic sugar gives the following predi- 

cate: 

Vft : K;input: Earray ■ event(k) V eveht(input)   (8) 
1 Component semantics are substantially more complex than this simple 

example. The complexity adds nothing to this paper. ^Interested readers 
should reference specific VSPEC papers listed in the bibliography [4,3] 

The attribute event is actually a predicate that is true 
when the value of its assocated symbol has changed from 
the last state. Thus, the activation condition is true when 
either the key or search database changes values. 

2.3   Architectures 

An architecture is a collection of interacting compo- 
nents, VHDL provides structural descriptions for refining 
component and process interconnection, VSPEC uses the 
same structural descriptions to connect entities annotated 
with VSPEC definitions. A VSPEC structural description is 
exactly analogous to structural architectures used in tradi- 
tional VHDL. Figure 4 shows a VSPEC component archi- 
tecture for a search architecture. This architecture speci- 
fies a sort component that prepares input for a binary search 
component. Figure 5 defines the VSPEC requirements for 
the components used in the architecture. 

use work.search^types; 
architecture  structure  of search is 

component  sort 
port   (list_.in:   in E_array; 

:  list_out: out E_array); 
end component; 
component bin_search 
port (l.ist_in: in E_array; 

k: in K; 
e: out E); 

end component; 
signal x: E_array; 

begin 
.Cl:;;sort port map (input,x); 
C2::bin_search port map (x,k, output); 

end:structure; 

Figure 4. A candidate architecture for the 
search example. 

VSPEC'S process algebra semantics supports defining 
bisimulation relationships [14] between single component 
requirements and VSPEC component architectures. A 
VSPEC architecture is a decomposition of a system into a 
collection of interconnected components where the require- 
ments of each component are known but an implementa- 
tion has not yet been defined. A VSPEC architecture rep- 
resents a decompsition step in a top down design process. 
Bisimulation relationships define when a VSPEC architec- 
ture exhibits behavioral equivalence with its associated re- 
quirements; e.g. when they look the same at their interfaces. 
Thus, using the axiomatic semantics of VSPEC with its pro- 
cess algebra control semantics a structural facet (the vspec 
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architecture) can be related with a requirements facet (the 
component specification). 

use work. search__types; 
entity sort is port 

(list_in: in array of E; 
list_out: out array of E); 

sensitive to list_in' event; 
requires true; 
ensures 

ordered(list_out'post) and 
perumuation(list_in,list_out'post) ; 

end bin_search; 

use work.search_types; 
entity bin_search is port 

(list_in: in array of E; 
k: in K; e: out E); 
sensitive to 

list_in'event or k'event; 
requires ordered(list_in); 
ensures V f: E 

output'post' = f iff 
key(f)=k 
and f 6 input; 

end bin search; 

Figure 5. Component specifications for can» 
didate search architecture. 

2.4   Performance Constraints 

Performance requirements are modeled using relations 
defined in the constrained; by clause. These relations 
define constraints over a collection of variables defining 
constraint types. The component is required to meet those 
constraints at all times in every state. Thus, constraints 
behave much like invariants with respect to the axiomatic 
functional requirements. 

The semantics of constraints can be defined in terms of a 
component's state. Simply, the constraint predicate must be 
true for all states: 

W: S •<?(?): (9) 

The constrained by clause from the search ex- 
ample (Figure 1) defines the following constraint predicate: 

Vs : S • area <= (3y,rn * hum) 
Apower <= 10mW 

Aclockfrequency <—50MH 

(10) 

(11) 

In VSPEC, physical types behave like VHDL physical 
types. Thus, these relations define constraints on area, 
power consumption and clock speed. 

Constraints present special problems when interacting 
with other facets. Requirements, behavior and structural 
facets interact in relatively intuitiye ways. Providing proper 
semantics defines clean relationships between facets. Con- 
straints do not share this characteristic. Constraint variables 
(e;g. heat and area) have no analog in any other facet Fur- 
ther, it is difficult if not impossible to model the relationship 
between a functional requirement and a constraint Con- 
straints haveneither a simulation or true axiomatic semantic 
making relationships difficult to define. 

3   VHDL, VSPEC and Systems Level Design 

VDHL provides two facets for modeling digital 
systems: (i) behavioral; and (ii) structural. The 
entity/architecture pair structure provides means 
for associating multiple facets to the same interface. How- 
ever, VHDL provides only a simulation semantics for rep- 
resenting systems. This limits VHDL'S impact in multi- 
facetted modeling at the systems level. 

VSPEC adds new facets and new modeling paradigms for 
those facets: The initial objectives for designing VSPEC 
were to support very high level synthesis. Specifically, ca- 
pabilities for specifying: (i) declarative functional require- 
ments; and (ii) performance constraints were initially de- 
veloped. Activiation conditions and architectures followed 

: las the need to represent component decomposition became 
apparent. 

VSPEC demonstrates the effectiveness of multi-facetted 
modeling. By adding modeling capabilities that do not re- 
quire operational semantics, support is provided for mod- 
eling requirements declaratively. Because requirements de- 
fine "what" rather than "how", declarative semantics make 
sense for requirements modeling. Further, a declarative se- 
mantics extended to both performance constraints and func- 
tion. 

Looking back at systems level language requirements 
and examining VSPEC and VHDL reveals that several sys- 
tems level modeling requirements are met. Both VHDL and 
VSPEC provide support for multiple modeling paradigms 
for different component facets, VHDL provides behav- 
ioral and structural support using operational semantics. 
VSPEC provides fucntional requirements and performance 
constraint support using a declarative semantics, VHDL and 
VSPEC also support modeling different components in the 
same system using different computational models. The se- 
mantics for achieving this are still somewhat arcane, but 
they do exist and are usable. Finally, a limited means for 
moving information between facets exists, VHDL uses a sin- 
gle, common operational semantics while VSPEC uses a sin- 
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gle, common declarative semantics. Bisimulation provides 
a link between VHDL and the functional aspects of VSPEC. 
Links to and from the constraint aspects of VSPEC are not 
as well defined. 

4 Moving VHDL to Systems Level Design 

Moving VHDL to the systems level involves taking the 
concepts demonstrated in VSPEC and: (i) extending them 
to the general case; and (ii) providing consistent language 
support. This section describes one possible method to ac- 
complish these goals. This description represents initial 
thoughts on this topic: none of the VHDL extensions de- 
scribed in this section have been implemented. 

Extending the facet concept to more general cases means 
providing a general structure for supporting facets, VSPEC 

currently annotates the entity description because it de- 
fines interface requirements. Thus, the interface is the most 
logical place for the descrption. The component interface is 
not the best place for describing all requirements. 

VHDL does provide a structure useful for as- 
signing multiple models to a component. The 
entity/architecture model allows multiple models 
to be denned for a given interface. To extend this, language 
support must be provided for different facets of an entity. 
Specifically, the architecture is replaced by a facet 
structure that serves a similar, more general purpose, 
figure 6 shows several facets defined for a single entity. 

Each facet defined in Figure 6 uses its own computa- 
tional model. The model is selected based on appropri- 
ateness for the information being represented and language 
constructs are provided appropriately. As new facets are 
identified, new facets are added to the systems level lan- 
guage using this common syntactic support The hetero- 
geneous nature of facets makes mem substantially different 
than VHDL architectures all of which share ä common sim- 
ulation based semantics. 

5 A Potential Semantic Basis 

The need to move information between facets is what 
defines systems engineering activities. How those hetero- 
geneous models interacts profoundly influences work at 
the systems leveL Thus, it is important to begin model- 
ing the interaction of facets. The syntax described in the 
previous section that extends VHDL to the systems level 
is rather standard. However, mixing computational mod- 
els within the same language environment presents interest- 
ing research challenges. Reconciling information between 
computational models may be the most difficult of these 
challenges. 

The approach taken by both VHDL and VSPEC is to de- 
fine a common semantic basis for all language constructs. 

VHDL provides a simulation semantics for each system 
component, VSPEC provides a declarative, axiomatic se- 
mantics for each construct. However, problems tend to 
arise when migrating information between the two com- 
putational models. Modeling inherently operational infor- 
mation declaratively (or vice-versa) simply serves to over 
complicate the entire model. 

Forcing all system component and facet representations 
into a single semantic model may cause designers to sac- 
rifice useful design abstractions. For example, the abstrac- 
tions used to model discrete time systems must be sacrificed 
if analog time is the basic underlying semantics. The same 
holds true for any single underlying semantic. 

The solution to this problem is modeling how facets in- 
teract without resorting to a single model. Information 
should be visible among facets when and where appropri- 
ate. It should remain in the facet where it is modeled and 
be moved directly into the interacting facet without moving 
through a universal representation. Figure 7 shows graphi- 
cally the information flow into a unified representation ver- 
sus information flow between facets. 

System facets and their interactions can be viewed theo- 
retically as institutions [6]. Although it is not proposed that 
facets be implemented as institutions, using this abstraction 
potentially aids understanding and modeling information. 

Each system facet is a category where: (i) objects are 
model instances in that facet; and (ii) arrows are homomor- 
phisms betweem model instances. To satisfy these require- 
ments, a facet must be a formal system consisting of a lan- 
guage, formal semantics and inference system. Homomor- 
phism is classically denned as theory containment. Specif- 
ically, if a homomorphism exists between two objects, then 
the first is contained in the theory of the second. These char- 
acteristics result trivally from category theory definitions. 

A category [15] C is defined as: 

1. A collection of objects 

2. A collection of morphisms (represented by arrows) 

3. Operations or declarations assigning each arrow / a 
domain object, d, and co-domain object c. Given / : 
o-+i specifies arrow /, dom f = a and cod / = b. 

4. A composition operator (o) assigning to each pair of 
arrows / and g such that cod / = dorn g a composite 
arrow gof : dom/ -> cod g stastifying the associative 
law: 

ho(gof) = (hog)of 

5. An identity arrow id A : A -> A satisfying the identity 
law: 

idAof = fAfoidA = f 
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— The basic component interface 

— remains the same 

entity search is port 

(input: in array of E; 

k: in K; 

output: out E); 

end. search; 

— A requirements facet containing an 

— axiomatic specification 

facet requirements of component is axiomatic 
begin 

includes KeyToElement(E, K) ; 

modifies output; 

sensitive to 

k'event or input'event 

requires true; 

ensures V e: E 

output'post = e iff 

key (e)=k 

and e £ input; 

end requirements; 

— A requirements facet containing a 
— performance constraint specification 

facet constraints of component is peformance 
begin 

size < 3 um * 5 um; 
power < 10 mW; 

clock < 50 MHz; 

end constraints; 

— A behavioral facet containing behavioral 
— VHDL 

facet function of component is behavioral 

variable i: integer; 
begin;;: :■::;::: 

for i;in input'range loop 

end loop; 

end function; 

—An architecture facet containing structural 
— VHDL 

facet architecture of component is structural 
component sort 

port;: {list-in: in array of E; 

list_out: out array of E); 

end-component; 

component bin.search 

::port (list-in: in array of E; 

k: in K; 

■e: out E); 
end:: component; 

signal x: array of E; 
begin 

Cl: sort port map (input,x); 

C2: bin_search port map (x,k,e); 

end architecture; 

Figure 6. Some potential facets defined using a VHDL-like systems representation. 

Homomorphisms between objects within a category rep- 
resent changes to design instances where correctness is 
maintained. Relationships between information domains 
can be represented by treating information domains as cat- 
egories and interrelationships as functors. 

An institution [6] X is defined as: 

1. A category Sign of signatures. 

2. A functor Sen: Sign -» Set giving the set of sentences 
over a given Signatare. 

3. A functor Mod : Sign ->• Catop giving thevariety of 
models of a given signature 

4. A satisfaction relation |=C Mod{i:) x Sen(T,) for 
each Sin Sign 

Such that for every morphism ip : S -+ S' in Sign, the 
satisfaction condition: 

J|:::;:     m' f= ip(e) ■«■ ip(m') f= e ? 

holds for each TO' in Mod(S') and each e in Sen(S) 
What the ins defines is a link between theorems 

in one category with theorems in another. The institution 

enforces a condition that links facets and forces information 
between them to remain consistent Thus, if a theorem in 
one facet changes, appropriate theorems in a linked facet 
must change to keep information consistent between facets. 

Instititions provide the necessary formal framework for 
a semantic definition. The various facets must be modeled 
formally as well as the functors regulating interactions. Fur- 
ther, institutions will not form the basis of an efficient im- 
plementation. Thus, language structures must be provided 
that link facets. These language structures can use the insti- 
tution as their formal basis while providing a more efficient 
link between two different facets. For example, an institu- 
tion would be developed that links a requirements facet to 
a structural facet for a given entity. One possible basis of 
this institution could be the bisimulation condition defined 
between VSPEC requirements and VSPEC architectures. Ob- 
viously, there is still much work to be done before these 
concepts can be used to formally describe the relationship 
between two different facets of a component However, the 
institution model appears to be a promising approach. 
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Figure 7. Information flow into a universal representation vs. direct flow between facets. 

6. Related Work 

Odyssey Research Associates (ORA) is developing 
Larch/VHDL, an alternative Larch interface language for 
VHDL [11]. Larch/VHDL is targeted for formal analysis 
of a VHDL description and ORA is defining a formal se- 
mantics for VHDL using LSL. The LSL representations are 
used in a traditional theorem prover (Penelope, developed 
for a similar annotation language for Ada [7]) to verify sys- 
tem correctness. Larch/VHDL annotations are added to a 
specific VHDL description to represent proof obhgations for 
the verification process. This differs from VSPEC'S purpose 
of representing requirements and design decisions at high 
levels of abstraction. Further, Larch/VHDL provides only 
a declarative representation of the operational VHDL se- 
mantics. However, the interface language defined by ORA 
does provide a means for defining requirements much like 
VSPEC'S axiomatic component. 

Augustin and Luckham's VAL [2] is another attempt to 
annotate VHDL for requirements modeling. The purpose 
of a VAL annotation to a VHDL descriptioh is to document 
the design for verification. VAL provides mechanisms for 
mapping a behavioral description to a structural description. 
Two VAL/VHDL descriptions of a design can be transformed \ 
into a self-checking VHDL program that is simulated to ver- 
ify that the two descriptions implement the same function. 
This is once again slightly different than VSPEC'S purpose 
of high level requirements representation. Further, VAL'S 
semantics is operational in that it can be trasformed into 
VHDL assertions. 

The abstract architecture representation capabilities of 
VSPEC are also fairly closely related to several architecture 
description languages that have been^^ developed to describe 
software architectures [5]. Some of the more well known 
arc^tectur#description are UhiCon [16], WRIGHT [1] and 
RAPIDE [12, 13]. Each of these languages allow the def- 
inition of components and connectors to define a software 
architecture. This is very similar to the VHDL notion of a 
stractural architecture. 

Allen and Garlan's WRIGHT language is of particular in- 

terest when discussing VSPEC because a WRIGHT compo- 
nent is defined with a variant of CSP. Unlike VSPEC'S use 
of CSP to define component synchronization, WRIGHT uses 
CSP to define component behavior as well. A WRIGHT de- 
scription consists of a collection of components interacting 
via instances of connector types. WRIGHT'S CSP descrip- 
tions define the sequence of events a component or connec- 
tor participates in. 

7   Conclusions 

^ T^ paper presented preliminary thoughts on the exten- 
sion of VHDL to the systems level. First, the systems level 
design problem was defined as sharing information between 
system facets, VHDL supports limited multi-facet model- 
ing, but does not provide sufficient flexibility to be called 
a systems-level design language. Second, VSPEC was pre- 
sented as a first step towards systems level design, VSPEC 
adds information facets to VHDL that support modeling re- 
quirements, performance constraints and abstract architec- 
tures. Finally, initial syntactic and semantic extensions to 
VHDL were presented that add a facet construct to the 
language and model its semantics using institutions. We be- 
lieve these extensions would be a first step towards making 
VHDL more suitable for systems level design. 
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Abstract 

Evaluating architectural design decisions early in the 
design process is critical for cost effective design. For- 
mal analysis can provide such evaluation if architec- 
tures are defined in a formal way. This paper describes 
how VSPEC can be used to formally define an archi- 
tecture during requirements specification, VSPEC is a 
Larch interface language for VHDL that annotates VHDL 
entities using the axiomatic style provided by Larch in- 
terface languages. Using VHDL 'S structural definition 
support, entities described in this manner are connected 
to form architectural descriptions. Activation condi- 
tions over component inputs define when that compo- 
nent must perform its transform. In this paper, we 
formally define a VSPEC component's state and how 
component states interact in an architecture. A rudi- 
mentary formal semantics for component activation is 
presented and used to define two potential satisfaction 
criterion. 

1. Introduction 

Architectural design decisions made early in a sys- 
tem's design profoundly affect overall design quality. 
Unfortunately, architecture decisions are rarely evalu- 
ated until late in the design process. Simulation-based 
design languages such as VHDL [17] do not allow evalua- 
tion until complete models exist. Such models include 
not only architectural decisions, but also component 
design decisions. For large systems, simulatable mod- 
els appear late in the design driving up the cost of error 

* Support for this work was provided in part by the Advanced 
Research Projects Agency and monitored by Wright Labs under 
the RASSP Technology Program, contract number F33615-93- 
C-1316. 

correction. 

A solution to late architecture evaluation is formal 
analysis of abstract architectures at the requirements 
level. An abstract architecture is an inter-connected 
collection of components where the requirements of 
each component are specified without defining their im- 
plementation. Thus, an abstract architecture describes 
a class of solutions rather than a single instance. In- 
stead of waiting for a completed system including de- 
sign detail, formally described abstract architectures 
can be evaluated when architecture decisions are made. 
VSPEC [3], a Larch interface language [8] for VHDL [17], 
is a requirements description language that includes 
formal architecture definition support. 

: VSPEC describes the requirements of digital system 
components using the canonical Larch approach and 
interconnects component descriptions using VHDL'S 

structural definition features. Each VHDL entity is 
annotated with a pre- and post-condition to indi- 
cate the component's functional requirements. VSPEC- 
annotated entities are connected together using a VHDL 

structural architecture to form an abstract architec- 
ture. The VHDL architecture indicates interconnec- 
tion in the traditional manner, but the requirements 
of each component are defined instead of their imple- 
mentations. An activation condition can be defined 
to explicitly indicate when a component should exe- 
cute. Finally, VSPEC allows a designer to describe non- 
functional requirements critical in selecting from alter- 
native architecture implementations. 

This paper describes VSPEC, concentrating on the 
language's facilities for describing abstract architec- 
tures. Section 2 provides a brief summary of the VSPEC 

language. Section 3 describes VSPEC abstract architec- 
tures, including a definition of the VSPEC state model 
and a description of how a process algebra (CSP [9]) is 
used to provide a semantics for the VSPEC activation 
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condition. Section 4 discusses how these semantics can 
be used to verify that an abstract architecture satisfies 
the specification of the entity. The paper concludes 
with a discussion of related work. 

2. A Brief Summary of VSPEC 

VSPEC is a requirements specification language for 
digital systems. As a requirements specification lan- 
guage, it is used very early in the design process to 
describe "what" a digital system must do. The oper- 
ational style of VHDL makes VHDL alone ill-suited for 
requirements specification. It forces a designer to de- 
scribe a system by defining a specific design artifact 
that describes "how" the system behaves. Using VHDL : 
as a requirements specification language forces a de- 
signer to deal with unnecessary detail at an early point 
in the design process. 

In contrast to VHDL's operational style, VSPEC al- 
lows a designer to declaratively describe a component. 
A VSPEC description of a sorting component is shown 
in Figure 1. As with most other Larch interface lan- 
guages, the requires and ensures clauses are used 
to state the pre- and post-conditions of the compo- 
nent. The sort component does has a pre-condition 
of true which means it will function correctly for any 
set of inputs. The post-condition states that the out- 
put contains all the same elements as the input (ile.; 
permutation (output'post, input)) and the output 
is in order. Any implementation of a sorting compo- 
nent that makes this post-condition true in the next 
state is a valid implementation of these requirements. 
More generatlly, given a component with requires 
predicate I(St) and ensures predicate 0(Si, St'post), 
f(St) is an implementation of the requirements if the 
following condition holds: 

V5-/(5i)=^Ö(5i,/(5i)) (1) 

In addition to allowing a designer to describe "what" 
a component does, VSPEC also addresses another short- 
coming of VHDL: it allows a designer to specify perfor- 
mance constraints in a consistent fashion. The VSPEC 
constrained by clause is used for this purpose. As 
shown in Figure 1, this clause defines relations over 
constraint variables. Currently, the defined constraint 
variables include power consumption, layout area (ex- 
pressed as a bounding box), heat dissipation, clock 
speed and pin to pin timing. Constraint theories writ- 
ten in LSL define each constraint type. Users may define 
their own constraints and theories if desired. _ 

The state clause contains a list of variable decla- 
rations that define the internal state of a component. 

These variables maintain state information that may 
not be recorded by the values of the component's ports. 
A state clause is not needed in the sorting component 
specification in Figure 1, but an example of this clause 
can be found in the Move Machine description [3]. 

The modifies clause lists variables, ports and sig- 
nals whose values may be changed by the entity. Most 
other Larch interface languages contain a modifies 
clause, and the definition of VSPEC modifies clause 
is very similar to the definitions found in these lan- 
guages [4, 7, 12]. The includes clause is used to in- 
clude Larch Shared Language definitions in a VSPEC 
description. The sorts and operators defined in the 
LSL trait named by the includes clause can be used 
in the VSPEC definition. In this example, the SortOps 
trait defines two predicates: permutation and sorted. 

The sensitive to clause plays the same role in a 
VSPEC definition that sensitivity lists and wait state- 
ments play in ä VHDL description. It defines when 
a component is active. The sensitive to clause 
for sort in Figure 1 states that the entity activates 
(and sorts its input) whenever the input changes. 
The sensitive to clause contains a predicate indi- 
cating when an entity should begin executing. The 
next section contains a more precise semantics for the 
sensitive to predicate. 

3. Abstract Architectures 

:l;: VHDL structural architectures composed of VSPEC 
annotated components specify abstract architectures. 
The VHDL architecture remains unchanged indicat- 
ing component instantiation and connections. How- 
ever- the configuration does not assign an en- 
tity/architecture pair to each component instance in 

I ;the architecture. Instead, the configuration states that 
:ieach component references an entity with an architec- 
ture called VSPEC. This signifies that at the current 
point in the design, the requirements of this component 
are known (via the VSPEC description) but no imple- 
mentation has been defined. 

Consider the VSPEC description of a find compo- 
nent shown in Figure 2a. The output of find is the 
element from the input array with the same key as 
the k input. This requirement is represented by find's 
ensures clause. One possible way to meet this require- 
ment is to connect the output of a sorting component to 
a binary search component as shown in Figure 3. The 
specification for sort is the same as the one in Sec- 
tion 2 while the bin_search specification is shown in 
Figure 2b. The only difference between this structural 
description of find and a VHDL structural description 
of find is the configuration specifies that the VSPEC 
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entity sort is port 

(input: in integer_array; 

output: out integer_array); 

includes SortOps; 

modifies output; 

sensitive to input'event; 

requires true; 

ensures 

permutation(output'post, input) and 

sorted(output'post); 

constrained by 

power <= 5 mW and size <= 3 urn * 5 urn 

and heat <= 10 mW and clock <= 50 MHz 
and input<->output <= 5 Ms; 

end sort; 

H 

sort 

A 

y 
X 

input 

V 

t    t 
Vcc     Clk  >- 

output 

Time 

Figure 1. VSPEC description of a sorting component. 

descriptions of sort and bin_search should be used 
instead of a specific architecture for these two entities. 
This configuration describes an abstract architecture 
for the find component. Any implementation satisfy- 
ing the VSPEC requirements of sort and bin_search 
may be associated with these entity definitions. The 
abstract architecture for find defines a class of solu- 
tions with a common structure. 

Although a VHDL architecture referencing VSPEC 

definitions defines components and interconnections, 
additional information must be added to specify when 
the VSPEC components activate. In traditional sequen- 
tial programming, a language construct "executes" fol- 
lowing termination of the construct preceding it. For 
correct execution, a construct's pre-condition must be 
satisfied when the preceding construct terminates. In 
hardware systems, components exist simultaneously 
and behave as independent processes. No predefined 
execution order exists so there is no means of implicitly 
determining when a component's pre-condition should 
hold. 

VHDL provides sensitivity lists and wait statements 
to synchronize entity execution and define when a com- 
ponent in a structural architecture is active^ VSPEC 
achieves the same end using the sensitive to claused 
The sensitive to clause contains a predicate called 
the activation condition that indicates when an entity 
should begin executing. Effectively, this activation con- 
dition defines when a VSPEC annotated entity's precon- 
dition must hold. When the sensitive to predicate 
is true, the pre-condition must hold and the imple- 
mentation must satisfy the post-condition. When the 
sensitive to predicate is false, the entity makes no 
contribution to the state of the system. In the find 
example, both components activate when any of their 
input signals change. 

Formally, the contribution of the sensitive to 
clause to the transformation specified by VSPEC is eas- 
ily represented using a traditional process algebra such 
as CSP [9]. Components become processes and events 
are defined as the states a component enters. Thus, 
any VSPEC component can be described by a process 
that consumes states and generates a process in a new 
state. To define such state changes, a component state 
is defined along with a means for combining component 
states into an architecture state. 

The formal VSPEC model of the state of a component 
is based on Chalin's state model [4, Chapter 6] for LCL. 

This model partitions the computational state of an 
LCL description into an environment and a store [19]. 
The environment maps (variable) identifiers into ob- 
jects and the store binds objects to the values they 
contain: 

Env   = 

Store   = 

=   Id^ Obj 

=    Obj -> Value 
(2) 

(3) 

Separating the environment and the store in this 
fashion is common among formal models of program 
state. In a language such as LCL, a motivating fac- 
tor for this is to allow multiple names for the same 
element of memory. For example, two C pointers can 
obviously reference the same memory location. The 
program state model above represents this situation 
by mapping each of these pointers to the same object 
in the Env map. 

This partitioning of component state is used in the 
VSPEC state model. In addition to allowing the correct 
representation of VHDL access types, this partitioning 
also allows the state of an abstract architecture to be 
more easily represented. For a single VSPEC-specified 
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entity find is port 

(input: in element_array; 

k: in keytype; 

output: out element); 

includes Element(element,keytype, 

element_array); 

modifies output; 

sensitive to 

input'event or k' event; 

requires true; 

ensures forall (e : element) 

(output = e implies 

(e.key = k 

and elem.of(e,input))); 

constrained by 

power <= 5 mW 

and size <= 3 urn * 5 urn 

and k<->output <= 5 Ms 

and heat <= 10 mW 

and clock <= 50 MHz; 

end find; 

entity bin_search is  : 

port (input: buffer element.array; 

k: in integer; 

value: out element); 

modifies value; 

sensitive to i 

input/event or k'event; 

requires sorted(input); 

ensures output = e iff (e.key=k and 

element_6f(e,input)); 

constrained by 

power <= 1 mW and 
sisize <= 1 urn *; 2 urn; 

end bin_search; 

Figure 2. VSPEC descriptions of find and binary search components. 

component, Env contains a map from each port and 
state variable in the VSPEC description to an object.J 
Store maps each of these objects to their current value; i 
We call this the abstract state of the VSPEC component. 

When VSPEC components are connected together to 
form an abstract architecture, the elements of Env and 
Store are slightly different. The Store contains objects % 
for each port in the architecture's entity, for each sig- 
nal in the architecture and for the state variables of 
each component in the architecture. The Env maps 
each of these three types of elements to the proper ob- 
ject, but it also maps the ports of each architecture 
component to the object that represents the architec- 
ture signal the port is connected to. We call the state 
model of an abstract architecture the concrete state of 
the component. 

In the simple two component example of Figure 4, 
the abstract state of system, A and B are: 

The concrete state of the struct architecture is: 

MnVgystem 

Store system     — 

WEnVA     = 

StoreA   = 
£ ■; :]Ena^-:::, = 

StoreßM:^=-\ 

{sysJn *-> objsys_in, 

sys-out>~> objsys_out) 

i Objsys_in .l->  Vgys_in , 

00JSyS_OUt   |—r   VSys^j>utf 

{xn- objx,y i-> objy} 

{objx H- vx, objy >-+Vy} 

{w I-» objw,z >-» objz} 

{objw i->- vw, objz M- vz} 

Env, struct,v,ttm 

Store. ■struct,y,tm      — 

{sys^in H- objsys_in, 

sys-out H» objsys_out, 

c H- objc, x H-> 0bjsys_in, 

y H» objc,w i-)- objc, 

z i-4 objsys_out} 

\0bjSys_in ^ Vgys—ini 

Objsys_out »"> Vsy^ut, objc •"> Vc} 

^Notice that x, y, w and z now map to the objects 
containing the signal values the component ports are 
connected to. 

The semantics of a VSPEC entity are defined by a CSP 
process that defines the sequence of states the entity 
passes through. Let C be an entity with sensitive 
to, requires and ensures predicates S(St), I(St) and 
0(St,St'post), respectively. The process defining C in 
any state r is: 

Cr = r : tf -* Cr>post (4) 

where * = {t: Tc \ S (t)} is the set of states that satisfy 
C"s activation condition and Px is the process P in 
some state x. 0(r,r'post) must hold to assure the 
transformation's correctness. Thus, when an external 
force changes the abstract state to one that satisfies 
the entity's activation condition (r in Equation 4), the 
process will consume r and behave like Cr'post. A trace 
of the process defined by a VSPEC entity is a sequence 
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architecture structure of find is 
component  sorter 

port   (input:   in element_array; 
output:  out element_array); 

end component; 
component searcher 

port  (input:  in element_array; 
key:  in integer; 
value:  out element); 

end component; 
signal y: element_array; 

begin 
bl:   sorter port map(input,y); 
b2:  searcher port map(y,k,output); 

end structure; 

configuration test.vspec of find is 
for structure 

for bl:sorter use entity 
work.sort(VSPEC); 

end for; 
for b2:searcher use entity 

work.bin_search(VSPEC); 
end for; 

end for; 
end test_struct; 

input 

instance b1 of 
sorter component 

y , 

instance b2 of 
searcher component 

output 

key k 
" 

find entity 

Figure 3. A VSPEC abstract architecture representation of the find component. 

of abstract states the entity enters. Each of these states 
satisfy C's activation condition. Thus, the alphabet of 
C is equal to \£\ 

If f(St) implements the requirements specified by 
I{Si) and 0{St,St'post) (i.e. f{St) satisfies Equa- 
tion 1), Equation 4 can be re-written as: 

Cr = r : * -> C/(r) (5) 

In this situation, the process consumes r and / is 
applied to r to generate a new abstract state. The 
entity then behaves like the process defined by Cf(Ty 

CSP's concurrency operator combines component 
processes to define the behavior of a VSPEC architec- 
ture. Let Cx, C2,..., Cn be the processes represented 
by Equation 4 or 5 for the set of VSPEC component 
instances in architectureA. The process representing 
architecture A is: 

A=C1\\Cs\\...\\Cn (6) 

When the current state satisfies some component's 
activation condition, the component performs its spec- 
ified transformation to its abstract state. This change 
is propagated to the concrete state of the architecture 
where the activation condition of another component 
may be satisfied. This causes the process to repeat 
until the system changes to a concrete state where no 
component's activation condition is satisfied. The sys- 
tem then waits until some external source changes the 
concrete state to one that activates some component in 
the architecture to start the process again. 

In the CSP model of a VSPEC process, this notion can 
be understood by examining the possible traces of A 

from Equation 6. Hoare [9] defines traces over parallel 
composition, traces(Cx || Cz), as: 

{t\(t\ ad)e traces{d) 

A(t f aC2) e traces{Cs) 

AtEiaCxUaCs)*} 

Thus, the traces of a parallel composition of com- 
ponents are all traces that when restricted to the al- 
phabet of each component yield a trace of that com- 
ponent. Furthermore, traces of Ci || Cz only contain 
events from the alphabet of either components. Thus, 
every trace of A contains only states that satisfy the 
activation condition of at least one component in A. 

If A enters a state where none of its component's 
activation condition is true, it will wait for a change on 
one of its input ports. Sequences in traces(A) con- 
tain only states that activate a component of A so 
the process representing A only consumes those states. 
However, a change to a component's input port also 
causes a state change and inactive components must 
wait for events from external sources to initiate acti- 
vation. Traces(A) is not strictly the set of all states a 
component may enter, but the set of all states a com- 
ponent enters from active states. 

4. System Verification 

This section describes how the CSP semantics of 
a VSPEC abstract architecture can be used to verify 
that an abstract architecture for an entity satisfies the 
VSPEC specification of the entity.   Many satisfaction 
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entity A is port 

(x : in integer; 

y : out integer); 

requires IA{X); 

ensures OA(X, y'post); 
modifies y; 

end A; 

entity B is port 

(v : in integer; 

z : out integer); 

requires IB{W)'> 

ensures OB(W,Z'post); 
modifies z; 

end B; 

architecture struct of system is 

component A 

port (x : in integer; 

y : out integer); 

end component; 

component B 

port (w : in integer; 

z : but integer); 
end component; 

signal c; 

begin 
cl:  A port map(sys_in,c); 
c2: ;B port map(c,sys_out); 

end struct; 

entity system is port 
(sys_in  :  in integer; 
sys_out   :  out integer); 

end system; 

Figure 4. Example of two entities connected serially.1 

criteria could be specified and checked. Here, two ex- 
amples are considered: (1) weak bisimulation; and (2) 
trace equivalence. Weak bisimulation will evaluate the 
final state of a halting system. Trace equivalence will 
look at traces from systems that do not halt.     ■ 

Satisfaction criteria will be evaluated by comparing 
the abstract states from the problem definition with 
concrete states of the abstract architecture. To make 
this comparison possible, an abstraction function that 
maps concrete states to their abstract equivalent must 
be defined. We call this function abs and note that a 
concrete state c is equivalent to an abstract state a if 
and only if abs(c) = a. 

The most traditional correctness criterion used to 
verify an abstract architecture implements its specifica- 
tion is weak bisimulation [15]. A weak bisimulation (or 
simply bisimulation) condition holds when a sequence 
of states in the concrete model produces a desired sin- 
gle state change specified by the abstract model (see 
Figure 5). Only the first and last state of the con- 
crete state sequence are significant. The specific state 
sequence leading from the initial concrete state to the 
final concrete state is ignored. 

Equation 7 is a weak bisimulation correctness obli- 
gation for showing architecture A satisfies a single ab- 
stract state change specification. Here, ^^ is the set 
of concrete states where the activation condition of at 
least one component in A is true. The obligation states 
that for concrete state traces starting in a state whose 
abstract projection satisfies the abstract specification's 
pre-condition, either the abstract projection of the fi- 
nal process state in the trace satisfies the component 

Abstract State 

Concrete State 

Figure 5. Concrete state changes associated with 
a single abstract state change. 

post-condition or the process can consume the state 
and continue. 

Vr : traces(A) ■ I(abs(r0)) A Ajr — As =>• 

(O(o6s(r0), abs(s)) VsS VA) 

For systems with clearly defined halting or pausing 
points, Equation 7 is an appropriate correctness crite- 
rion. However, many systems run continuously. Their 
states are observable, but there is no notion of pausing 
or halting to synchronize abstract state comparison. 
To formulate the correctness criterion for these types 
of systems, a concept similar to bisimulation is applied 
to sequences of states rather than a single state change. 

Traces can be derived from the abstract require- 
ment specification by defining process R in state S as 
Rs = 5 : $ -» Rs' in the same manner as the con- 
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S     ) |S' 

Abstract State       "^    Component Execution — >- 

Concrete State 

s' 

Figure 6. Concrete state changes associated with 
multiple abstract state changes. 

crete requirements. Such traces are exactly one event 
long when a single state change is defined. However, if 
the resulting state satisfies the component's activation 
condition, then the process will continue to consume 
states. Thus, traces(Rs) is the set of finite abstract 
state sequences defined for process R. With this, traces 
through both the abstract requirements and concrete 
specification are defined. 

The image of a trace with respect to an abstraction 
function, abs, is simply the abstraction function ap- 
plied to each trace element, image({eo, e^,.. .,e„)) = 
{abs (to) > abs (ej),..., abs (e„)). The reduce function i 
eliminates invisible state changes by replacing adjacent 
equivalent states in a trace with a single state. For ex- 
ample, reduce({a, b, o, a, c, c, c)) = (a, 6, a, c). 

A concrete specification is correct with respect to 
reduced abstract equivalence if: 

Vf : traces(P) • reduce(t) £ traces(R).        (7) 

In this case, an architecture specification is correct if 
every trace of concrete states can be reduced to a legal 
trace of abstract states. Reducing the state sequence 
removes concrete state changes that are not observable 
in the external state. It should be noted that the com- 
ponent semantics thus far specifies only liveness prop- 
erties (what the system must do) and largely ignores 
safety properties (what the system must not do) [11]. 
The weak bisimulation semantic specifies only charac- 
teristics of the resultant state and by definition ignores 
characteristics of intermediate states. This should not 
be viewed as a fatal flaw because this is precisely what 
traditional block diagrams define. Some methodolo- 
gies may extend the block diagram approach to include 
safety properties, but the traditional diagram specifies 
only what must happen and when it must happen. 

5. Related Work 

Odyssey Research Associates (ORA) is developing 
Larch/VHDL, an alternative Larch interface language 

for VHDL [10].' Larch/VHDL is targeted for formal anal- 
ysis of a VHDL description and ORA is defining a formal 
semantics for VHDL using LSL. The LSL representations 
are used in a traditional theorem prover (Penelope, de- 
veloped for a similar annotation language for Ada [6])to 
verify system correctness. Larch/VHDL annotations are 
added to a specific VHDL description to represent proof 
obligations for the verification process. This differs 
from VSPEC'S purpose of representing requirements and 
design decisions at high levels of abstraction. 

: Augustin and Luckham's VAL [2] is another attempt 
to annotate VHDL. The purpose of a VAL annotation 
to a VHDL description is to document the design for 
verification, VAL provides mechanisms for mapping a 
behavioral description to a structural description. Two 
VAL/VHDL descriptions of a design can be transformed 
into a selfchecking VHDL program that is simulated to 
verify that the two descriptions implement the same 
function. This is once again slightly different than 
VSPEC'S purpose of high level requirements represen- 
tation. 

The abstract architecture representation capabilities 
of VSPEC are also fairly closely related to several archi- 
tecture description languages that have been developed 

I to describe software architectures [5]. Some of the more 
well known architecture description are UniCon [18], 
WRIGHT [1] and RAPIDE [13, 14]. Each of these lan- 

jguages allow the definition of components and connec- 
tors to define a software architecture. This is very sim- 
ilar to the VHDL notion of a structural architecture. 

Allen and Garlan's WRIGHT language is of particu- 
lar interest when discussing VSPEC because a WRIGHT 

component is defined with a variant of CSP. Unlike 
VSPEC'S use of CSP to define component synchroniza- 
tion, WRIGHT uses CSP to define component behavior 
as well. A WRIGHT description consists of a collection 
of components interacting via instances of connector 
types. WRIGHT'S CSP descriptions define the sequence 
of events a component or connector participates in. 

6. Conclusions 

This paper presented VSPEC, a requirements spec- 
ification language for VHDL, emphasizing VSPEC ar- 
chitecture representation. A VSPEC specification de- 
scribes the pre-condition, post-condition, performance 
constraints and activation condition of a VHDL entity. 
When the activation condition is true, the entity's pre- 
condition must hold and the entity is responsible for 
making its post-condition hold in the next state. The 
semantics of a single component VSPEC specification is 
based on the canonical Larch axiomatic approach while 
CSP is used to define the semantics of an architecture 
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of components. Two satisfaction criterion used to ver- 
ify that an architecture is a refinement of requirements 
specification were discussed here: weak bisimulation 
and trace equality. Weak bisimulation evaluated an 
architecture's halting state with respect to a require- 
ments specification. Trace equality compared state 
traces from systems that do not halt. These mecha- 
nisms allow an architectural description to be formally 
analyzed at the requirements level. 

At the present time, the first version of the lan- 
guage definition is complete. A VSPEC parser that type 
checks expressions by calling an LSL parser has been im- 
plemented. Constraint theories for the five basic con- 
straints (power, area, heat dissipation, clock speed and 
pin to pin timing) have been developed. The formal:k 
semantics of a single component VSPEC specification 
based on the canonical Larch approach is complete as 
is the first cut at the semantics of an abstract archi- 
tecture using CSP. Several specifications using these 
techniques have been developed, but further investiga- 
tion into architecture semantics is needed. 

The main area of future work for VSPEC is to re- 
fine the semantics of an abstract architecture of VSPEC 

components. The CSP semantics presented in this pa- 
per are useful, but we may investigate using a; different 
process algebra such as CCS [16] to describe architec- 
tures. The main reason for this is that weak bisimula- 
tion was originally formulated using CCS and it may be 
more natural to reason about weak bisimulation using 
this process algebra. 

One of the primary goals of this research is to pro- 
vide a mechanism that allows the affects of architecture 
decisions to be evaluated earlier in the design process. 
VSPEC accomplishes this goal by allowing components 
in an architecture to be described using a traditional 
axiomatic specification and formally modeling the in- 
teractions between components using a process algebra. 
This approach allows architecture decisions to be eval- 
uated at the requirements level which should improve 
overall design quality. 
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Abstract 
Evaluating design decisions early in the design pro- 

cess is critical for cost effective design. Formal anal- 
ysis can provide such evaluation if architectures are 
defined in a formal way. VSPEC is a Larch interface 
language for VHDL that annotates VHDL entities using 
the axiomatic style provided by Larch interface lan- 
guages. Using VHDL's structural definition support, 
entities described in this manner can be connected 
to form architectural descriptions. Activation condi- \ 
tions over component inputs define when the compo- 
nent must perform its transform. In this paper, we 
provide a simple introduction to VSPEC and its mech- 
anisms for describing systems architectures. 

1    Introduction 

Design decisions made early in a system's design 
profoundly affect overall design quality. Unfortu- 
nately, such decisions are rarely evaluated until late 
in the design process. Simulation-based design lan- 
guages such as VHDL [10]do not allow evaluation until 
complete models exist.: Such models include not only | 
abstract decisions, blip also low level component de- 
sign decisions. For large systems, simulatable models 
appear late in the design increasing the cost of error 
correction. 

A solution to late evaluation is formal analysis at 
the requirements level.: Formal representation of re- 
quirements and abstract architectures supports anal- 
ysis of incomplete systems at high abstraction lev- 
els. Furthermore, formalisms provide some guaran- 
tee of rigqfiin representation and correctness in analy- 
sis. Abstract architectures support representation and 
analysis of requirements partitioning attempts and ar- 
chitecture level design decisions. 

Supportfor this work was provided in part fey the Advanced 
Research Projects Agency arid monitored by: Wright Labs under 
the RASSP Technology Program, contract number F33615-93- 
C-1316. 

An abstract architecture is an inter-connected col- 
lection of components where the requirements of each 
component are specified without defining their imple- 
mentation. Thus, an abstract architecture describes a 
class of solutions rather than a single instance. Instead 
of waiting for a completed system including design 
detail, formally described abstract architectures can 
be evaluated when architecture decisions are made. 
VSPEC [1, 2], a Larch interface language [4, 6] for 
VHDL [10], is a requirements description language that 
includes formal architecture definition support. 

VSPEC describes the requirements of digital system 
components using the canonical Larch approach and 
interconnects component descriptions using VHDL'S 

structural definition features. Each VHDL entity is 
annotated with a pre- and post-condition to indi- 
cate the component's functional requirements. VSPEC- 
annotated entities are connected together using a 
VHDL structural architecture to form an abstract ar- 
chitecture. The VHDL architecture indicates intercon- 
nection in the traditional manner, but the require- 
ments of each component are defined instead of their 
implementations. An activation condition can be de- 
fined to explicitly indicate when a component should 
execute. Finally, VSPEC allows a designer to describe 
non-functional requirements critical in selecting from' 
alternative architecture implementations. 

2    A Brief Summary of VSPEC 
VSPEC is a requirements specification language for 

digital systems. As a requirements specification lan- 
guage, it is used very early in the design process to 
describe "what" a digital system must do. The op- 
erational style of VHDL makes VHDL alone ill-suited 
for requirements specification. It forces a designer to 
describe a system by defining a specific design arti- 
fact that describes "how" the system behaves. Using 
VHDL as a requirements specification language forces 
a designer to deal with unnecessary detail at an early 
point in the design process. 
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In contrast to VHDL's operational style, VSPEC al- 
lows a designer to declaratively describe a compo- 
nent. A VSPEC description of a sorting component 
is shown in Figure 1. As with most other Larch in- 
terface languages, the requires and ensures clauses 
are used to state the pre- and post-conditions of the 
component. The sort component does has a pre- 
condition of true which means it will function cor- 
rectly for any set of inputs. The post-condition states 
that the output contains all the same elements as the 
input (i.e. permutation(output'post, input)) and 
the output is in order. Any implementation of a sort# 
ing component that makes this post-condition true 
in the next state is a valid implementation of these;; 
requirements. More generatlly, given a component?: 
with requires predicate I(St) and ensures predicate 
0(St, St'post)1, f(St) is an implementation of the re- 
quirements if the following condition holds: 

Vs»I{St)=>0(St,f{St)) (1) 

In addition to allowing a designer to describe 
"what" a component does, VSPEC also addresses an- 
other shortcoming of VHDL: it allows a designer to 
specify performance constraints in a consistent fash- 
ion. The VSPEC constrained by clause is used for 
this purpose. As shown in Figure 1, this clause defines 
relations over constraint variables. Currently, the de- 
fined constraint variables include power consumption, 
layout area (expressed as a bounding box), heat dissi- 
pation, clock speed and pin to pin timing. Constraint 
theories written in LSL define each constraint type. 
Users may define their own constraints and theories if 
desired. 

The state clause contains a list of variable dec-■;•! 
larations that define the internal state of a compo- 
nent. These variables maintain state information that 
may not be recorded by the values of the component's 
ports. A state clause is not needed in the sorting 
component specification in Figure 1. 

The modifies clause lists variables, ports and sig- 
nals whose values may be changed by the entity. Most 
other Larch interface languages contain a modifies 
clause, and the definition of VSPEC modifies clause 
is very similar to the definitions foiirid in these lan- 
guages [3|;;5, 8]. The includes clause is used to in- 
clude Larch Shared Language definitions in a VSPEC 

description. The sorts and operators defined in the LSL 
trait liamed by the includes clause can be used in the 

1The St'post notation: references the value of St in the state 
after the transforniatiort: described by the entity is performed. 
This is analogous to the variable' notation öf LCL [3, 5] 

VSPEC definition. In this example, the SortOps trait 
defines two predicates: permutation and sorted. 

The sensitive to clause plays the same role in a 
VSPEC definition that sensitivity lists and wait state- 
ments play in a VHDL description. It defines when 
a component is active. The sensitive to clause 
for sort in Figure 1 states that the entity activates 
(and sorts its input) whenever the input changes. 
The sensitive to clause contains a predicate indi- 
cating when an entity should begin executing. The 
next section contains a more precise semantics for the 
sensitive to predicate. 

3    Abstract Architectures 

::::j::: VHDL structural architectures composed of VSPEC 

annotated components specify abstract architectures. 
The VHDL architecture remains unchanged indicat- 
ing component instantiation and connections. How- 
ever, the configuration does not assign an en- 
tity/architecture pair to each component instance in 
the architecture. Instead, the configuration states that 
each component references an entity with an architec- 
tureiijcalled VSPEC. This signifies that at the current 
point in the design, the requirements of this compo- 

snent are known (via the VSPEC description) but no 
I implementation has been defined. 

Consider the VSPEC description of a find compo- 
nent shown in Figure 2a. The output of find is the el- 

; ement from the input array with the same key as the 
k input. This requirement is represented by find's 
ensures clause. One possible way to meet this re- 
quirement is to connect the output of a sorting com- 
ponent to a binary search component as shown in Fig- 
ure 3. The specification for sort is the same as the 
one in Section 2 while the bin_search specification 
is shown in Figure 2b. The only difference between 
this structural description of find and a VHDL struc- 
tural description of find is the configuration specifies 
that the VSPEC descriptions of sort and bin_search 
should be used instead of a specific architecture for 
these two entities. This configuration describes an 
abstract architecture for the find component. Any 
implementation satisfying the VSPEC requirements of 
sort and bin_search may be associated with these 
entity definitions. The abstract architecture for find 
defines a class of solutions with a common structure. 

Although a VHDL architecture referencing VSPEC 
definitions defines components and interconnections, 
additional information must be added to specify when 
the VSPEC components activate. In traditional se- 
quential programming, a language construct "exe- 
cutes"  following termination of the construct pre- 
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entity sort is port 
(input: in integer.array; 
output: out integer_array); 

includes SortOps; 
modifies output; 
sensitive to input'event; 
requires true; 
ensures 

permutation(output'post, input) and 
sorted(output'post); 

constrained by 
power <= 5 mW and size <= 3 urn * 5 um 
and heat <= 10 mW and clock <= 50 MHz 
and input<->output <= 5 Ms; 

end sort; 

H 

sort 

input 

i 

y 
X 

\ ' 

t   t 
Vcc     Clk 
 =>- 

output 

Time 

Figure 1: VSPEC description of a sorting component. 

ceding it. For correct execution, a construct's pre- 
condition must be satisfied when the preceding con- 
struct terminates. In .hardware systems, components 
exist simultaneously and behave as independent pro- 
cesses. No predefined execution order exists so there 
is no means of implicitly determining when a compo- 
nent's pre-condition should hold. 

VHDL provides sensitivity lists and wait state- 
ments to synchronize entity execution and define when 
a component in a structural architecture is active. 
VSPEC achieves the same end using the sensitive to 
clause. The sensitive to clause contains a predicate 
called the activation condition that indicates when an 
entity should begin executing. Effectively, this acti- 
vation condition defines when a VSPEC annotated en- 
tity's precondition must hold. When the sensitive 
to predicate is true, the pre-condition must hold and 
the implementation must satisfy the post-condition. 
When the sensitive :to predicate is false, the en- 
tity makes no contribution to the state of the system. 
In the find example, both components activate when 
any of their input signals change. 

Formally, the contribution of the: sensitive to 
clause to the transformation specified by VSPEC is eas- 
ily represented using a traditional process algebra such 
as CSP [7]. Components become processes and events 
are defined as the states a component enters. Thus, 
any VSPEC component can be described by a process 
that consumes states and generates a process in a new 
state. To define such state changes, a component state 
is defined along with a means for combining compo- 
nent states into an architecture state. 

The formal VSPEC model of the state of a com- 
ponent is based oii Chalin's state model [3, Chapter 
6] for LCL. This model partitions the computational 

state of an LCL description into an environment and 
a store [11]. The environment maps (variable) iden- 
tifiers into objects and the store binds objects to the 
values they contain: 

...Env   = 

Store    — 

=    Id-> Obj 

—    Obj —> Value 
(2) 

(3) 

Separating the environment and the store in this 
fashion is common among formal models of program 
state. In a language such as LCL, a motivating fac- 
tor for this is to allow multiple names for the same 
element of memory. For example, two C pointers can 
obviously reference the same memory location. The 
program state model above represents this situation 
by mapping each of these pointers to the same object 
in the Env map. 

This partitioning of component state is used in the 
VSPEC state model. In addition to allowing the correct 
representation of VHDL access types, this partition- 
ing also allows the state of an abstract architecture 
to be more easily represented. For a single VSPEC- 
specified component, Env contains a map from each 
port and state variable in the VSPEC description to 
an object. Store maps each of these objects to their 
current value. We call this the abstract state of the 
VSPEC component. 

When VSPEC components are connected together 
to form an abstract architecture, the elements of Env 
and Store are slightly different. The Store contains ob- 
jects for each port in the architecture's entity, for each 
signal in the architecture and for the state variables of 
each component in the architecture. The Env maps 
each of these three types of elements to the proper 
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entity find is port 

(input: in element_array; 

k: in keytype; 

output: out element); 

includes Element(element,keytype, 

element_array); 

modifies output; 

sensitive to 

input'event or k'event; 

requires true; 

ensures forall (e : element) 

(output = e implies 

(e.key = k 
and elem_of(e,input))); 

constrained by 

power <= 5 mW 

and size <= 3 urn * 5 urn 

and k<->output <= 5 Ms 

and heat <= 10 mW 

and clock <= 50 MHz; 

end find; 

(a.) 

entity bin_search is 

port (input: buffer element_array; 

k: in integer; 

value: out element); 

modifies value; 

sensitive to 

input'event or k'event; 

requires sorted(input); 

ensures output = e iff (e.key=k and 

element^of(e,input)); 
: .constrained by 

power <= 1 mV and 

size <= 1 um * 2 um; 

end bin_search; 

(b.) 

Figure 2: VSPEC descriptions of find and binary search components. 

object, but it also maps the ports of each architecture 
component to the object that represents the architec- 
ture signal the port is connected to. We call the state 
model of an abstract architecture the concrete state of 
the component. 

In the simple two component example of Figure 4, 
the abstract state of system, A and B are: 

Mill)system 

StoreSystem     —fi9{objSys_in |-> 

{sys-in ■-*. objsy$_,in, 

SyS-OUt t-> Objsys-out) 

sys_m>.; 

Ovjsys—out l—* 'Osys—out) 

EnvA -■!= {x >-> objXl y •-*- objy} 

StoreA - {objx >^> vx,objyi-*iiy) 

Envß = {w..!->■ objw, z >->■ objz\ 

Stores = {objw >-* vw, objz <-»■ vz} g 

The concrete state of the struct architecture is: 

Envstr*ctsy$tem    = {sys—in 

sys-oui 
' 0"]sys^im 

objsys—out, 

C H-+ objc, X *-* objSys_in, 

y>-* objc,w >->• objc, 

Store. structsystem 

Z >->•  0bjsys_0Ut} 

{0bjsys_i 'sys—in l—* ^sys_jnj 

'sys—out obj, 

objc >-* vc} 

■ v. hys—out j 

Notice that x, y, w and z now map to the objects 
containing the signal values the component ports are 
connected to. 

::iThe semantics of a VSPEC entity are defined by 
a CSP process that defines the sequence of states 
the entity passes through. Let C be an entity 
with sensitive to, requires and ensures predi- 
cates S{St), I{St) and 0(St, St'post), respectively. 
The process defining C in any state r is: 

Cr = r:V ■T'post (4) 

where * = {t : Tc\S(t)} is the set of states that sat- 
isfy C's activation condition and Px is the process P 
in some state x. 0(r, r'post) must hold to assure the 
transformation's correctness. Thus, when an external 
force changes the abstract state to one that satisfies 
the entity's activation condition (r in Equation 4), the 
process will consume r and behave like Cr'p0st- A 
trace of the process defined by a VSPEC entity is a se- 
quence of abstract states the entity enters. Each of 
these states satisfy C's activation condition. Thus, 
the alphabet of C is equal to \P. 



architecture structure of find is 
component sorter 
port (input: in element_array; 

output:' out element_array); 
end component; 
component searcher 
port (input: in element_array; 

key: in integer; 
value: out element); 

end component; 
signal y: element_array; 

begin 
bl: sorter port map(input,y); 
b2: searcher port map(y,k,output); 

end structure; 
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configuration test_vspec of find is 
for structure 

for bl:sorter use entity 
uork.sort(VSPEC); 

end for; 
for b2:searcher use entity 

work^bin_search(VSPEC); 
end for; 

end for; 
end test_struct; 

input_ 

instance b1 ol 
sorter component 

input output 

instance b2 of 
searcher component 
input 

valuo 

key 

output 

find entity 

Figure 3: A VSPEC abstract architecture representation of the find component. 

If f(St) implements the requirements specified by 
I (St) and 0(St,St'post) (i.e. f(St) satisfies Equa- 
tion 1), Equation 4 can be re-written as: 

Cr = r : * -* C/(r (5) 

In this situation, the process consumes r and /is 
applied to r to generate a new abstract state. The 
entity then behaves like the process defined by C/(r)- 

CSP's concurrency operator combines component 
processes to define the behavior of a VSPEC architec- 
ture. Let Ci,Cz,...,Cn be the processes represented 
by Equation 4 or 5 for the set öf ySPEC component 
instances in architecture A. The process representing 
architecture A is: 

A = .Cf\\CiM....\\Cni (6) 

When the current state satisfies; some component's 
activation condition, the component performs its spec- 
ified transformation to its abstract state. This change 
is propagated to the concrete state of the architecture 
where the activation condition of another component 
may be satisfied. This causes the process to repeat 
until the system changes to a concrete state where no 
component's activation condition is satisfied. The sys- 
tem then waits until some external source changes the 
concrete; state to one that activates some component 
in thefarchitecture to start the process again. 

In the CSP model of a VSPEC process, this notion 
can be understood by examining the possible traces 
of A from Equation 6. Hoare [7] defines traces over 
parallel composition, iraces(Cj || Cg), as: 

iräces(Cj \\ C2)    = {t\(t \ aCi) e traces(d) 

A(t \ aC2) € traces(C2) 

M€(aCi UaC2)*} 

Thus, the traces of a parallel composition of com- 
ponents are all traces that when restricted to the al- 
phabet of each component yield a trace ofthat compo- 
nent. ? Furthermore, traces of Cj || C2 only contain 
events from the alphabet of either components. Thus, 
every trace of A contains only states that satisfy the 
activation condition of at least one component in A. 

If A enters a state where none of its component's 
activation condition is true, it will wait for a change 
on one of its input ports. Sequences in traces(A) con- 
tain only states that activate a component of A so 
the process representing A only consumes those states. 
However, a change to a component's input port also 
causes a state change and inactive components must 
wait for events from external sources to initiate acti- 
vation. Traces(A) is not strictly the set of all states 
a component may enter, but the set of all states a 
component enters from active states. 

4    Conclusions 
This paper presented a basic introduction to VSPEC, 

a requirements specification language for VHDL. A 
VSPEC specification describes the pre-condition, post- 
condition,   performance  constraints   and   activation 

2RecaU that in csp [7], t \ aP restricts the trace t to contain 
only events that appear in the alphabet of P. 



?M5 

entity A is port 

(x : in integer; 

y : out integer); 

requires IA{X)\ 

ensures O^ (x, y'post); 
modifies y; 

end A; 

entity B is port 

(w : in integer; 

z : out integer); 

requires Iß(w); 
ensures Og(w, z'post); 
modifies z; 

end 6; 

entity system is port 

(sys_in : in integer; 

sys_out : out integer); 

end system; 

architecture struct of system is 

component A 

port (x : in integer; 

y : out integer); 

end component; 

component B: 

port (w : in integer; 

z : out integer); 

end component; 

signal c; 

begin 

cl: A port map(sys_in,c); 

c2: B port map(c,sys_out); 

end struct; 

Figure 4: Example of two entities connected serially. 

condition of a VHDL entity. When the activation con- 
dition is true, the entity's pre-condition must hold and 
the entity is responsible for making its postcondition 
hold in the next state. The semantics of a single com- 
ponent VSPEC specification is based on the canonical 
Larch axiomatic approach while CSP is used to define 
the semantics of an architecture of components. 
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Abstract 

Complex digital systems are often decomposed into architectures very early in the design 

process. Unfortunately, traditional simulation based languages such as VHDL do not allow the 

impact of these architectural decisions to be evaluated until a complete, simulatable design of the 

system is available. After a complete design is available, architectural errors are time-consuming 

and expensive to correct. However, there is an alternative to simulation based techniques: for- 

mal analysis of abstract architectures at the requirements level. This paper describes VSPEC's 

approach for defining and analyzing abstract architectures. VSPEC is a Larch interface language 

for VHDL that allows a designer to specify the requirements of a VHDL entity using the canonical 

Larch approach. VHDL structural architectures that instantiate VSPEC entities define abstract 

architectures. These abstract architectures can be evaluated at the requirements level to de- 

termine the impact of architectural decisions. This paper briefly introduces VSPEC, provides a 

formal definition of VSPEC abstract architectures and presents two examples that illustrate the 

architectural definition capabilities of the language. 

This paper was submitted to the; VLSI Design journal on February 29, 1996. It was revised and resubmitted on 
July 25, 1996. Support for this work was provided in part by the Advanced Research Projects Agency and monitored 
by Wright Labs under the RASSP Technology Program, contract number F33615-93-C-1316. 
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1    Introduction 

Architectural design decisions made early in a system's design profoundly affect overall design 

quality. Unfortunately, architecture decisions are rarely evaluated until late in the design process. 

Simulation-based design languages such as VHDL [5, 12] do not allow evaluation until complete 

models exist. For large systems, simulatable models appear late in the design process driving 

up the cost of error correction. These models include not only architectural decisions, but also 

component design decisions. The ability to analyze architectural decisions as they are made would 

significantly reduce this cost. 

A solution to late architecture evaluation is formal analysis of abstract architectures at the 

requirements level. An abstract architecture is an interconnected collection of components where 

the requirements of each component are specified without denning their implementation. Thus, an 

abstract architecture describes a class of solutions with a common structure rather than a single 

instance from that class. Formally described abstract architectures can be evaluated early in the 

design process when architecture decisions are made before component designs exist. 

VSPEC [7], a Larch interface language [10] for VHDL [12], is a requirements specification language 

that includes formal architecture definition support, VSPEC describes the requirements of digital 

system components using the canonical Larch;approach. Each VHDL entity is annotated with a pre- 

and post-condition to specify the entity's functional requirements. vsPEC-annotated entities can 

be connected together using a VHDL structural architecture to form abstract architectures. The 

VHDL architecture indicates interconnection in the traditional manner, but the VSPEC specification 

defines the requirements of each component instead of a specific design. 

The description of a sorting component illustrates the difference between VHDL and VSPEC. In 

VHDL, the simplest way to describe the function of a sorting component is a behavioral architecture 

that implements a quicksort, bubble sort or some other sorting algorithm. This is actually a 

description of ^ow" the sorting component behaves.  In contrast, a VSPEC specification of this 
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entity sort is 
port (input:  in element_array; 

output:  out element_array); 
includes SortPredicates; 
modifies output; 
sensitive to input'event; 
ensures 

permutation(output'post,input); 
ordered(output'post); 

end sort; 

Figure 1: VSPEC description of a sort entity. 

component explicitly describes "what" the device must do without defining "how" it is done. A 

VSPEC description of a sorting component is shown in Figure 1. It states the output has all 

the same elements as the input (permutation(output'post,input)) and the output is in order 

(ordered(output'post)). Any sorting algorithm may be used to implement these requirements, 

but VSPEC allows this algorithm to be chosen later in the design process. 

Larch interface languages have been developed for a variety of programming languages includ- 

ing C [9], C++ [15] and Modula-3 [14]. At the single component level, VSPEC differs very little 

from other interface languages. However, defining a Larch interface language for VHDL presents 

a problem not found in these other languages. In traditional programming languages, a language 

construct executes after the construct immediately preceding it terminates. In VHDL, there is no 

implicit execution order among process level constructs and thus no means of determining when a 

component's pre-condition should hold, VSPEC addresses this problem by allowing a user to define 

an activation condition in addition to the pre- and post-condition for an entity. When an entity's 

state satisfies its activation condition; its pre-condition must hold and the entity must perform its 

specified transformation. 

This paper describes VSPEC, concentrating on the language's facilities for describing abstract 

architectures. Section 2 provides a brief summary of the VSPEC language. Section 3 describes 

vsrac abstract architectures, including a definition of the VSPEC state model and a description of 

how a process: algebra (CSP [11]) is used to provide a semantics for the VSPEC activation condition. 
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Section 4 presents two example VSPEC specifications, concentrating on the architecture representa- 

tion portions of each specification. Finally, the paper concludes with a discussion of related work 

and a brief summary. 

2      VSPEC 

VSPEC is used to describe "what" a digital system should do. It adds a requirements definition 

capability to VHDL entities analogous to the requirements definition capability that Larch interface 

languages add to traditional procedure and function signatures. ^ As shown in Figure 2, the require- 

ments of a VHDL entity can be defined by describing a relationship from the current inputs and 

state of the system to the outputs and the next state. This section describes how F(x, s) and s are 

defined in VSPEC and contrasts thesedefinitions: with VHDL definitions of F(x, s) and s. 

input 
ports 

entity E           i 

X *F(x,s)n 
 ^ 

Z i 

L-       S      :« 

output 
ports 

Figure 2: State-based specification model. 

As shown in the find entity of Figure 3, a VHDL entity defines an interface. The output of find 

should be the element from the input array with the same key as the key input. A VHDL entity 

does not describe functional information such as this. The entity only defines the component's 

interface. 

entity::find is port 
(ittpüt: in element_axray; 
key: in keytype; 
output: out element); 

end find; 

input 

key 

find - 

??? output 

Figure 3: A VHDL entity defining the interface for a find component. 
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architecture behavior of find is 

begin 

process (input,k) 
begin 

for i in input'range loop 

if key = input(i).key then 

output <= input(i); 
exit ; 

end if; 

end loop; 

end process; 

end behavior; 

Figure 4: A behavioral VHDL architecture defining tie find component's behavior. 

The VHDL architecture construct describes the function of a component by associating be- 

havior and/or structure with an entity. Figure 4 is a behavioral VHDL description of the find 

component's function. In terms of the state model in Figure 2, this architecture describes F(x,s) 

as a linear search algorithm. This looks very similar to a C or Pascal function describing "how" the 

system behaves. Unfortunately, this operational description biases the system towards a particular 

implementation. Since VSPEC'S purpose is requirements specification, it is undesirable to bias the 

system to a particular implementation this early in the design process. 

VSPEC eliminates this;problem by allowing a user to declaratively specify the requirements of 

a digital system. Seven clauses annotate the VHDL entity construct to allow the specification of 

"what" a component should do instead of VHDL'S description of "how" the component performs 

this function. The requires, ensures and sensitive to clauses are used to specify the device's 

functional requirements. Non-functional constraints are described in the constrained by and 

modifies clauses. The component's internal state is declared in the state clause and the includes 

clause is used to make types and operators from a Larch shared language description visible in a 

VSPBG
;
 component. The remainder of this section briefly summarizes these clauses. For a more 

complete description of the VSPEC clauses, see one of the other VSPEC references. [1, 7] 

I Component function is described in the requires and ensures clauses. The requires clause 

defines a pre-condition over inputs and state variables while the ensures clause defines a post- 
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entity find is port 

(input: in element_array; 

k: in keytype; 

output: out element); 

includes Element(element,keytype, 

element_array); 

modifies output; 

element 
array 

key 

m ;"■"■'. 

search 
requires true; _ a 

y F(ln) 
ensures forall (e : element) 

(output = e implies 
(e.key = k 

and elem_of(e,input))); 

constrained by 

power <= 5 mW 

and k<->output <= 5 Ms 
and heat <= 10 mW 

and clock <= 50 MHz; 
end search; 

■ ;■ 

—■—^ 

." x 

t    t 
Vcc  Clk 

Time T 

element 

Figure 5: The find entity annotated with a VSPEC definition. 

condition over inputs, outputs and state variables. The ensures clause defines legal outputs and 

the next state when the requires clause is satisfied. A component's user is responsible for making 

certain the requires clause is satisfied whenever the component is in use. When the requires 

clause is satisfied, the described entity is responsible for making the ensures clause true. 

Let a be the state of aVSPEC entity as denned by its ports and state variables. If 1(a) is the 

requires predicate and Ö(cr,cr') is the ensures predicate, then the VSPEC annotation defines the 

following requirements: 

Va-3a'-I(a)=> 0(a,a') (1) 

F(a) is an implementation of these requirements if the following condition holds: 

Va-I(a)^0(a,F(a)) (2) 

A VSPEC description of a find component is shown in Figure 5. Notice that the requires 

clause predicate is true meaning this entity will function correctly for any set of inputs of the 

proper type. The ensures clause predicate states that the output element has the same key as 

the k input and output is in thefinput sequence. In terms of the state model in Figure 2, this 

defines the requirements of F(0s), but unlike the VHDL description, it does not describe how to 
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implement the component. 

The VSPEC sensitive to clause1 is used to define when a component in an abstract architecture 

is active. When the sensitive to clause predicate is true, a component's pre-condition must hold 

and an implementation must satisfy the post-condition. A more precise description of this clause 

can be found in Section 3. 

Performance constraints are described in the constrained by and modifies clauses. Con- 

straints define requirements such as clock speed or layout area that are not part of the functional 

description. The constrained by clause defines relations over constraint variables. Currently, the 

defined constraint variables include power consumption, clock speed, area, pin-to-pin timing, and 

heat dissipation. Constraint theories written in the Larch Shared Language (LSL) [10] define each 

constraint type. Users may define their own constraints and theories if desired. The modifies 

clause lists variables, ports and signals whose values may be changed by the entity. This clause 

is useful when specifying whether an entity modifies a shared variable. The list of objects an en- 

tity modifies is not a traditional performance constraint, but this does restrict the set of potential 

solutions. Examples of the constrained by and modifies clauses are shown in Figure 5. 

The state of a VSPEG entity is described by the port definition and variables in the state 

clause. In VHDL, ports maintain their values between entity invocations. Thus, port values 

from the previous'state may be accessed in the current state. The state clause is used to define 

internal state variables that are used in the VSPEC definition only. These variables maintain state 

information that is not recorded in port values. When a VSPEC specification is refined into a VHDL 

architecture, these internal state variables will be refined into signals or variables that represent 

the sameihförmation. The state clause variable declaration represents this information during 

the requirements specification phase of the entity's design. An example of the state clause can be 

found in the Move Machine description in Section 4.2. 

Previous versions of VSPEC [1, 2, 7] did not have a sensitive to clause. 
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The includes clause is the final VSPEC clause.2 This clause is used to include LSL definitions 

in a VSPEC description or VHDL package declaration (see Section 4.2.)3 LSL is used to define the 

types and functions used in a VSPEC specification. An example of the includes clause is shown in 

Figure 5 and its syntax is the keyword includes followed by a list of trait references. The syntax 

of a trait reference is similar to a trait reference in LSL. It consists of the trait name followed by 

an optional parameter list. The parameter list is used to rename LSL names to a name visible in 

the VSPEC entity. Thus, an integer stack is included in a VSPEC specification with this includes 

clause: includes Stack(integer, int_stack). 

3    Architectures 

The previous section briefly described hqwyHDL and VSPEC are used to define the requirements of 

a single device in a digital system. The behavior of a device can also be described by decomposing 

it into smaller pieces and connecting these pieces together to form an architectural description 

of the device. This architectural description represents a refinement of the device's behavioral 

VHDL/VSPEC description. VHDL provides convenient facilities for defining architectural descriptions. 

This section briefly discusses these facilities and then describes how VSPEC uses them to form an 

abstract architecture. 

3.1    VHDL Structural Architectures 

VHDL uses structural architectures to represent component composition. A structural architecture 

describes h<yw sub-components are connected together to form a larger component. Figure 6 shows a 

structural architecture for find. Unlike the behavioral representation in Figure 4, this architecture 

indicates that a sort componeritxonnected to a search component implements the find function. 

2Previous versions of VSPEC [1, 2, 7]'also contained a based on clause. The modified syntax of the includes clause 
described here made the based on clause obsolete. 

3Allowing includes clauses in package declarations is a change from previous versions of VSPEC. [1, 2, 7] 
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This structural architecture should perform the same function as that specified in the behavioral 

description. 

The VHDL component construct defines each component used in a structural architecture. The 

structure architecture of find in Figure 6 declares two types of components that are used in this 

architecture: sorter and searcher. One instance of each of these components (named bl and b2) 

is created in the body of this architecture. The port maps of these component instances are used 

to indicate how the components are connected together. In the structure architecture for find, 

the system's input array is connected to the sorter input and the sorter output is connected 

to internal architecture signal y. The signal y and system input k are inputs to the searcher 

component. The output of the searcher is connected to the device output. 

The VHDL configuration construct is used to bind entity-architecture pairs to component in- 

stances. In this example, the test_struct configuration binds the bubble sort defined by entity 

sort with architecture behavior to the bi instance of the sorter component. Similarly, the binary 

search defined by entity bin_search with architecture behavior is bound to the b2 instance of 

searcher. If there were other architectures for these two entities (such as a structural architec- 

ture), a different configuration could have been specified stating that the components in structure 

mapped to these architectures. Entirely different entities could even have been defined. 

Since a structural architecture only defines dataflow between components, an additional mech- 

anism must be provided to define when a component activates. VHDL accomplishes this with 

sensitivity lists and wait statements. A sensitivity list contains a list of signals. Whenever an 

event occurs on one of these signals, the process resumes execution. The behavior architecture 

for sort is sensitive to its single input, while bin_search is sensitive to its input array and key 

value. This means the sort component sorts its input only when new input arrives. Likewise, a 

search occurs only when the key value or input array changes. A wait statement achieves the same 

result by waiting on signal conditions or for a specific simulation time interval. In this example, 

wait statements could replace sensitivity lists by removing the sensitivity lists and placing wait 

9 
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architecture structure of find is 
component sorter 

port (input: in element_array; 

output: out element_array); 
end component; 

component searcher 

port (input: in element_array; 

key: in keytype; 

value: out element); 

end component; 
signal y: element_array; 

begin 

bl: sorter port map(input,y); 
b2: searcher port map(y,k,output); 

end structure; 

entity sort is 

port (input: in element_array; 

output: out element_array);f 

end sort; 

architecture behavior of sort is 

begin 

process(input) begin 

— Behavioral VHDL description 
— of a bubble sort 

end process; 

end behavior; 

entity bin_search is 

port (input: in element_array; 
key: in keytype; 

value: out element); 
end bin_search; 

architecture behavior of bin_search is 

begin 

process (input,key) begin 

— Binary search algorithm 

— definition in behavioral VHDL 
end pro cess; - 

end behavior; 

configuration test_struct of find is 
for structure 

for bl:sorter use entity 

work.sort(behavior); 

end for; 

for b2:searcher use entity 

;!;■■' work.bin_search(behavior); 
i; end for; 

' \fend for; 

end test_struct; 

input} 

instance b1 ol 
: sorter component 
Input output 

instance b2 of 
searcher component 
input 

value 

key 

output 

find entity 

Figure 6: A VHDL architecture representing the composition of a sorting component and a binary 
search component implementing the find function. 

10 
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statements referencing the same signals at the end of the process definitions. 

These constructs allow VHDL to support architecture representation. Component declarations 

describe the inputs and outputs of each component type used in the architecture. Instances of these 

components are created in the architecture body and configurations are used to map component 

instances to an entity/architecture pair. Net lists indicate signal flow between component instances 

while sensitivity lists or wait statements synchronize component actions. 

3.2    VSPEC Abstract Architectures 

VHDL structural architectures containing VSPEC annotated components specify abstract architec- 

tures. The VHDL architecture remains unchanged indicating component instantiation and connec- 

tions, However, a VHDL architecture is not assigned to each component instance in the architecture. 

Instead, the configuration defines that each component references an entity with an architecture 

called VSPEC. This signifies that at the current point in the design, the requirements of this com- 

ponent are known (via the VSPEC description) but no implementation has been defined. 4 

The structure architecture of find shown in Figure 6 becomes an abstract architecture by 

referencing VSPEC definitions of the instantiated components. Figure 7 shows VSPEC entity defini- 

tions for the sort and bin_search components in Figure 6. A new configuration, test_vspec, has 

been defined for the find entity. It specifies that the VSPEC descriptions of sort and bin_search 

should be used Instead of a specific architecture for these two entities. This configuration describes 

an abstract architecture for the find component. Any implementation satisfying the VSPEC require- 

ments Of sort and bin_search may be associated with the entity definitions. The architectures 

specified in Figure 6 represent one such solution, but there are many others. 

The VSPEC description of sort specifies the requirements for a sorting component: the input and 

output must have all the same elements (i.e. output is a permutation of input) and the output must 

■;:■:■■ 4This is different than leaving the entity open. When a VHDL entity is left open, the design is being deferred. At 
the current point in the design, nothing is known about the function of the entity. In contrast, the requirements of a 
VSPEC entity are known^ even though an implementation is not. 

11 
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be in order. In a similar fashion, the bin_search specification states that whenever the component 

input is sorted, the component must ensure that the output element contains the same key as the 

k input and this element is an element of the input array. The requires and: ensures clauses of 

these entities use two predicates (permutation and ordered) to define these requirements. These 

predicates are defined in the LSL trait SortPredicates which is included in both VSPEC entities. 

requires ordered(input); 
.ensures output = e iff  (e.key=k and 

element_of(e,input)); 
end bin_search; 

configuration. test_vspee of find is 
for structure 

for bl:sorter use entity 
work.sort(VSPEC); 

end for; 
-.;-:.;:: ;f or b2: searcher use entity 

work.bin_search(VSPEC); 
end for; 

end for; 
end test_struct; 

entity sort is 
port (input:  in element_array; 

output:  out element_array); 
includes SortPredicates; 
modifies output; 
sensitive to input'event; 
ensures 

permutation(output'post,input); 
ordered(output'post); 

end sort; 

entity bin_search is 
port  (input: buffer element_array;: 

key:  in keytype; 
output:   out element); 

includes SortPredicates; 
modifies value; 
sensitive to k'event or input'event; 

Figure 7: VSPEC definitions for the sort and bin_search components in the find architecture. 

Although a VHDL architecture referencing vsPEG definitions defines components and intercon- 

nections, additional information must be added to specify when the VSPEC components activate. 

In traditional sequential programming, a language construct "executes" following termination of 

the construct preceding it. For correct execution, a construct's pre-condition must be satisfied 

when the preceding construct terminates. In hardware systems, components exist simultaneously 

and behave: as independent processes. Nqipredefined execution order exists, thus there is no means 

for determining when a component's pre-condition should hold. Consider the find example. The 

pre-condition of bin_search need hold only when sort has completed its transformation. At all 

other times, bin_search need only maintain its state. 

VHDL provides sensitivity lists and wait statements to synchronize entity execution, VSPEC 
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achieves the same end using the sensitive to clause. The sensitive to clause contains a pred- 

icate called the activation condition indicating when an entity should begin executing. Effectively, 

the activation condition defines when a VSPEC annotated entity's pre-condition must hold. When 

the sensitive to predicate is true, the pre-condition must hold and the implementation must 

satisfy the post-condition. When the sensitive to predicate is false, the entity makes no contri- 

bution to the next state of the system. Like the requires and ensures clauses, the sensitive to 

predicate is defined over entity port definitions and variables defined in the state clause. 

Recall that the structural VHDL architecture for find (Figure 6) specified that the sort compo- 

nent should only activate when its input changes and the binary search component activates when 

one of its inputs changes. Without the sensitive to clause, specifying this behavior in VSPEC 

would not be possible. Note the sensitive to clauses defined in the VSPEC description of find in 

Figure 7. In VSPEC, a signal's ' event attribute is true if the signal changed value from the previous 

state. Thus, both components activate whenever any of their inputs change value. 

3.3    Architecture Model Semantics 

The previous section provided an informal description of how VSPEC can be used to define an ab- 

stract architecture. This section provides a more precise, formal definition of the concepts presented 

above. First, the state of a VSPEC description is defined. After this, a precise definition of how the 

sensitive to,requires and ensures clauses define a transformation over this state is presented. 

The section concludes with a-simple example that illustrates these points. 

3.3.1    State Definition 

The |pte definition for an entity is a map from port, signal and variable names to their values. 

There are three different views of an entity state: (1) abstract; (2) component; and (3) concrete 

state. :.The abstract state is defined by a VSPEC description of an entity. The component state is 

the state of a single component in an abstract architecture and the concrete state represents the 
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state of all components of an abstract architecture. 

The abstract state includes the ports and state variables of an entity. The vsPECjsensitive 

to, requires and ensures clause predicates are defined over elements of the abstract state of 

the entity. The component state applies to an entity included as a component in a structural 

architecture. The component state is formed by taking the entity's abstract state and subjecting 

it to the renaming imposed by the signals the component is connected to in the architecture. 

This component state is used to construct: the concrete state of the structural architecture. The 

concrete state is the union of the component states for all of the components in an architecture. 

This structural architecture represents a refinement of the vsPEC definition of the entity. There is 

an abstraction function mapping the concrete state of the structural architecture to the abstract 

state defined by the VSPEC description of the entity; the structural architecture refines. 

Consider the VSPEC entity in Figure 8. The abstract state of the three entities in this figure are 

the inputs, outputs and state variables of the entities. Thus, the abstract states of these entities 

are: 

ABSTRACTsysitm   =   {sys-in H-> io,sys^.out i-s- ii,sysstate ■-* ig} 

ABSTRACMcom.fi    =   {inl >-» is,result^ i^,bl-.state *-+ i5} 

ABSTRACTcamV2—   {inl H* ie, in2 *-*' iq, result i-*- i8, c2state h-> ig] 

where io, ii, ...ig are all integers. As shown, the state is a map from names to values. However, for 

the purpose of clarity we will show just the names that form the various states throughout the rest 

of this paper. 

Within the struct architecture for the system entity, the A's component state (the first instance 

of compl} is found by taking compl's abstract state and performing the renaming defined by the 

signals the component is connected to. In this case, inl is connected to sys_in and result is 

connected to signal x. Thus, in the context of the struct architecture, inl of component instance 

A should be replaced by sys_in and result replaced by x. A similar renaming can easily be found 

for the inputs and outputs of the other components in the struct architecture. The renaming for 
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entity system is 

port (sys_in : in integer; 

sys_out : out integer;); 

state (sys_state : integer;); 

end system; 

entity compi is 

port(inl : in integer; 

result : out integer;); 
state (cl_state : integer;); 

end compl; 

entity comp2 is 

port(inl, in2 : in integer; 

result : out integer;); 

state (c2_state : integer;); 
end comp2; 

architecture struct of system is 
component compl: 

port (inl : in integer; 

result : out integer;); 

end component; 

component comp2 

port (inl, in2 •: in integer; 

result : out integer;); 
end component; 

signal x, y : integer; 

begin 

A : compl port map(sys_in,x); 
B : compl port map(x,y); 

C : comp2 port map(x,y,sys_out); 
end struct; 

sys_in 

compl 
instance A 

ln1        result 

d state 

sys_state 

system 

entity : 

compl 

instance B 

inl result 

c1 state 

comp2 
instance C 

Inl result 

in2 

c2 state 

sys_out 

Figure 8: Mample VSPEC entity used to explain the differences between abstract, component and 
concreteistate. 
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the other components is shown in the definition A and B's component states below. 

Since the struct architecture has more than one instance of the compi entity, the state variables 

of compl must be renamed to form the component state. This renaming avoids conflicts when 

forming the concrete state of the struct architecture. To simplify matters, we will always rename 

a component's state variables even if there is only one instance of an entity in the architecture. A 

number of renaming functions could be chosen, but the one used here is the state variable name in 

the abstract state subscripted with the instance label from the architecture. The component states 

of the components in the struct architecture are: 

COMPONENTA   =    ABSTRACTcomjli[inlIsys-in, result/x^lstate/clstateA] 

— {sys-in,x,clsta,teA} 

COMPONENTS   = ABSTRACTcompi [inl /x, result/y, c 1 state/clstates] 

= {x, y, cl—states} 

COMPONENTc   = ABSTRACTc0mp2[«rcj,:)'x^vn2/'y, result/'sys-out, c2 state/c2statec] 

— {x,y,sys-out,c2 state g} 

We are now ready to form the concrete state of the struct architecture for the system en- 

tity. The concrete state is simply the union of the component states for each component in the 

architecture: 

CONCRETMiructsystem   =:■ COMPONENTA ö COMPONENTS II COMPONENTc 

=    {sys-in,sys-jout,x,y,clstateA,cl states, c2statec} 

Since an abstract architecture represents a refinement of the requirements specified by VSPEC, 

an abstraction function can be defined to map the concrete state of the architecture the abstract 

state defined by the VSPEC description. 

Together, the abstract, component and concrete states represent the state of a VSPEC com- 

ponent. The examples in Sections 3.3.3 and 4 use these definitions to describe how a VSPEC 

description behaves. 
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3.3.2    Transform Definition 

The transform performed by a VSPEC architecture is defined by the sensitive to, requires and 

ensures clauses. The formal definition of the requires and ensures clauses was discussed in 

Section 2. It is very similar to the transform defined by a traditional Larch interface language. As 

described in Section 3.2, the sensitive to clause is used to synchronize components and define 

when the requires clause predicate must be satisfied. 

Formally, synchronization is easily represented using a traditional process algebra such as 

CSP [11]. Events are defined as changes in the state of the entity. Assume that F(St) is a func- 

tion between two states of entity P that implements the requirements specified in P's requires 

and ensures clauses (i.e. F(St) satisfies Equation 2). The process defined by entity P with a 

sensitive to predicate of S(St) in any state St is: 

Pst ;= * : SEN -> PF{St) (3) 

where SEN is the set of states that satisfy P's sensitive to clause: SEN = {t\S(t)}. Thus, a 

process in state St first waits for its sensitive to clause to be satisfied and then behaves like the 

same process in the state defined by applying F to the current state. 

Equation 3 defines a CSP process that describes the behavior of a single VSPEC entity, csp's 

concurrency operator (||) is used to define a process that describes the behavior of an architecture 

of VSPEC components. Let PQ,PI, ..., Pn be the processes represented by Equation 3 for the set of 

VSPEC component instances in architecture V. The process that represents architecture V is: 

1      V=Po\\Pl  ||...|| Pn (4) 

Thus, ^ach component in the architecture executes in parallel. Since a component activates only 

when |ts sensitive to clause predicate is true, this predicate is used to synchronize component 

execution. 
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entity example is entity cl is 
port(i:  in integer;  o:  out integer); port (x:  in integer; z:  out integer); 

end example; modifies z; 
sensitive to x'event;--:y 

architecture structural of example is   . requires Ii(x); 
component cl ensures Oj(x, z'post); 

port(input:  in integer; end cl; 
output: out integer); 

end component; entity c2 is ... 
component c2 .   port  (x:  in integer; z:  out integer); 

port(input:  in integer; modifies z; j 
output:  out integer); :      sensitive to x'event; 

end component; "requires l<>{x); 
begin ensures Ozix,z'post); 

bl:  cl port map(i.y); end c2; 
b2:   c2 port map(y,o); 

end structural; 

Figure 9: Specification of two components connected serially. 

3.3.3    Formal Model Example 

This section presents a simple example to explain How the concrete state of a VSPEC architecture 

changes as its inputs are modified by external components.   Consider the architecture shown in 

Figure 9. The abstract, component and concrete: state of the elements of this architecture are: 

ABSTRACT*: =   {x,z} 

ABSTRACT^   =   {x,z} 

#     COMPONENT*    =   {i,y} 

COMPONENT^   =   {y,o} 

CONCRETEsirUcura.iexample   =   {i,o,y} 

The transformation: performed by an architecture is defined from the components comprising 

it. Formally, the component requirements for cl and c2 are defined as: 

V x : integer, 3 z : integer • lt (x) =>• Oi (x, z'post) 

Vx : integer, 3 z : integer ■ Is(x) => Oz(x, z'post) 

The renaming defined by the architecture that is used to create the component state from the 

abstract state of an architecture can also be applied to these two equations. In this' example, this 
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defines the following logical requirements for cl and c2: 

V i : integer, 3 y : integer • It (i) => Oi {%, y'post) 

Vy : integer, 3 o : integer ■ I2(y)=$> Os{y,o'post) 

The renaming function is also applied to the modifies, state and sensitive to clause of cl 

and c2. After this renaming, the logical definitions of each component are expressed in the same 

name space as the concrete state of the system. 

Assume that a, b and c are integer constants and that f(x) and g(x) are functions that satisfy 

requirements for cl and c2 respectively. Let the initial concrete state of the system be S0 = {i i-+ 

a,y i-> b,o^ c} and let i'event be true and y'event be false. This means that el's sensitive to 

clause is satisfied and el's pre-condition must hold, cl will then make its post-condition hold in 

the next state. Instantiating the requirements for cl gives: 

3 z -.integer • It (c) =?> Ot (a, z) (5) 

Knowing that f(x) satisfies el's requirements and assuming It (a) is true implies that Oi (a,f(a)) 

is also true. Additionally, y'event is known to be false so c2 maintains its state and o does not 

change in the next state. Thus, one potential next state for this system is Sj = {i H a,j/ H 

/(a), o i-»- c}. Because: the function / is one of potentially many functions satisfying cl, we cannot 

claim that this is the only possible next state. 

Since y changed values from S0 to Sj, the predicate y'event is true in S^ Additionally, i did 

not change values in «S; implying that i'event is false in «S;. Thus, only component c2 activates in 

state Si. 

Using the same reasoning used for Si, values for S2 can be produced. Assuming that f{a) 

satisfies I2(f(a)) and knowing g(x) satisfies c2's requirements makes Os(f(a),g(f(a))) true. The 

input value i has not changed, cl maintains its state implying y does not change, and g(f(a)) 

satisfies c2's output condition. Thus, Ss = {i H-> a,y t-+ f(a),o ■-► g(f(a))} is a potential next 

state for the: system. 
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An interesting exercise is defining what happens when the input value i changes between states 

So andSi. Assume that i changes value from a to d making Sj — {i i-* d, y i-> /(a), o.»-> c}. Now 

i'event is true in Sj and both components execute on values from Si. In this case, S% = {i >->■ 

d, V >-* f(b), o H-> g(f(a))}. Note the value of o does not change from the previous example because 

the next state is defined only on variables defined in the current state. Using this model eliminates 

difficulty caused by instantaneous feedback and "pipelined" update functions, VHDL solves this 

same problem by allowing an infinite number of delta delays between major clock cycles of the 

simulation. 

3.4    Generating Proof Obligations 

The VSPEC formal model can be used to verify that a system's abstract architecture description 

satisfies the requirements described by the VSPEC specification of the system. This verification 

provides evidence that the abstract architecture description satisfies the abstract VSPEC specifica- 

tion. Finding such evidence depends on: (lj having the system requirements / and O; and (2) 

relating a concrete state produced by the abstract architecture with the abstract state specified for 

the system. A system's VSPEC description provides /land 0. The abstraction function from the 

concrete to the abstract state provides the means for comparing the abstract and concrete states. 

Weak bisimulatiqn [19] is used as the correctness criteria when attempting to verify that an 

abstract architecture satisfies a VSPEC description. As shown in Figure 10, weak bisimulation 

requires that some sequence of state changes in the concrete state of the system result in the 

correct single sta|e change in the absträctsstate. Only the first and last of the concrete states are 

significant. The system may pass through any concrete state as long as the abstraction function 

applied to the final concrete state results in the correct abstract state as defined by the abstract 

specification. 

In CSP, the sequence of states a VSPEC entity passes through is called a trace. A CSP trace of 

process P is ä finite;;Sequence of symbols representing the events processed by P. VSPEC events 
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Abstract State 

Concrete State 

Figure 10: Concrete state changes associated with a single abstract state change. 

are changes in state and they are represented in a trace by the state the entity changes to. Thus, 

a VSPEC entity satisfies the weak bisimulation criteria if two conditions hold for all traces of the 

abstract architecture. The first condition is that the abstraction function applied to the initial 

element of each trace must result in an abstract state that satisfies the abstract pre-condition. The 

second condition is that the final element of each trace mustsfeither have an abstract projection 

that satisfies the abstract post-condition or there must be some legal sequence of states that can 

be appended to the trace to form another trace. This ensures that the concrete state eventually 

reaches a state where the abstract specification is satisfied. 

4    Examples 

This section presets two examples that illustrate how VSPEC can be used to describe an abstract 

architecture. The first example is a simple tri-state buffer description that is used to define a simple 

2 input multiplexor. This example illustrates what happens when multiple sources drive a single 

value in a VSPEC abstract architecture. The second example is the description of a simple CPU 

called the Move Machine. This example illustrates shows a VSPEC description that is decomposed 

into an abstract architecture. 
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entity buffer is 
port (input:  in integer; 

control:  in boolean; 
output:  out integer); 

sensitive to control'event or input'event; 
ensures control implies output'post = input; 

end buffer; 

Figure 11: VSPEC description of a simple buffer. 

entity mux is 

port (inl, in2: in integer; 

select: in boolean; 

output: out integer); 

sensitive to inl'event or 

in2'event or select'event; 
ensures 

(select and output'post = inl) or 
(not select and output'post = in2); 

end mux; 

architecture struct of mux is 
component buffer 

port (input: in integer; 

control: in boolean; 

output out integer); 
end component;; 

component not ■ 
port (input: in boolean; 

output: out boolean); 
end component; 

signal select_inv : boolean; 

begin 

bl: buffer 

port map(inl;select,output); 
b2:- buffer 

port map(in2,select_inv,output); 
:ni: not 

■:;; port map (select,select, inv); 
end:-struct; 

Figure 12: VSPEC and abstract architecture description of a 2-input mux. 

4.1    Buffer and Multiplexor Example 

A VSPEC description of a simple buffer Is shown in Figure 11. In this example, input and output 

are both integers, but the specification could also be used if input and output were of any other 

type. When control is true, this device passes input to output. When control is false, the 

device places no requirements on the value of output in the next state. The specification allows for 

output to maintain its current value in the next state, but the specification also allows an external 

device to change the value of output. Consider using this buffer as a component in the abstract 

architecture description of the multiplexor in Figure 12. 

This figure shows both a VSPEC description of a multiplexor as well as a refinement of this 

description into an abstract architecture. The VSPEC entity mux is a straightforward description of 

22 



268 

a multiplexor. The struct architecture uses two instances of buff er and a not gate to decompose 

the multiplexor into an abstract architecture. 

Careful examination of this description reveals a very subtle but important point about VSPEC 

specifications and multiply driven signals. If a component description does not restrict the value 

of an output signal in the next state, other components in the system can still change the value 

of this signal without violating the component description. Suppose that the concrete state of the 

architecture is: 

CONCRETEstructmux   =   {inl •-* 7, in2 \-+ 3, select >-► true, output i-* 7, select-inv H* false} 

so that the abstract state of buff er instance bl is: 

ABSTRACT^    =    {input •-» 7, controls true, output i-> 7} 

Assume that some external device changes the select input to false. This causes buffer 

instance bl's control input to change to false which activates the buffer. This device must now 

make its ensures clause true in the next state. Since control is false, the ensures clause will be 

true in the next state for any value of output. Thus, buffer instance b2 can change the output 

signal of the architecture to 3 without violating bi^specification. The next state of the device is: 

CONCRETEstrui:imux   =   {ml \-+ 7, in2 i-» 3, select:H false, output H-J- 3, selectJ,nv i-> true] 

Thus, the output signal has changed values even though the bl buffer instance does not cause it to 

do so. Even though bl does not force ä change in state, it does not prohibit one either. An external 

device (buffer instance b2) has caused the output signal to change values. The specification of bl 

allows this change to occur. 

This description may not seem correct to an experienced VHDL user because the output signal 

is driven by two sources, but no resolution function is specified. Although this is illegal in VHDL, it 

is allowed in VSPEC. In most cases, the CSP statement that defines a VSPEC entity's contribution to 

thenext state of the system will define a single value for every signal, but a VSPEC description may 

allow more than one value for a specific signal. This is legal VSPEC because VSPEC is a specification 

language, not a simulation language like VHDL.   This implies that a VSPEC specification does 
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not need to deterministically define a single value for every signal in the system. It is certainly 

possible to do this with VSPEC by defining the requirements of resolution functions, but a VSPEC 

specification could allow a signal to be driven to two (or more) different values. In these cases, a 

designer implementing the specification may chose to drive the signal to any of its allowed values. 

4.2    The Move Machine 

A more complex example is the specification of a Move Machine [22]. The Move Machine is a simple 

CPU that moves data from one memory location to another. It uses four instructions: jump, load 

register from memory, store register to memory, and halt and four addressing modes: absolute, 

immediate, indirect and relative. Although the Move Machine is a simple device, its structure 

reflects how a more complex system might be represented. 

The first step in specifying the Move Machine is representing it as a simple instruction interpreter 

(Figure 13). At this level, only one VSPEC annotated entity describes the execution of each 

instruction and addressing mode. This entity contains state variables to store the current register 

contents and the value of the. instruction pointer. Thesensitive to clause states that the machine 

activates when its start;or;reset input is on or when-the value of the instruction pointer changes. 

The rather complex ensures clause predicate defines how the machine behaves for each instruction 

and addressing mode. An external entity would use this component by first applying the reset 

signal and then the start signal. This causes the machine to begin executing the instruction 

in memory location 0. The result of each instruction (except halt) cause the contents of the 

instruction pointer to change which activates the machine again in the next state. This continues 

until a halt instruction is processed, causing the machine to stop. 

One thing to note about this specification is the use clause on the first line. In VHDL, types 

and functions can be declared in separate packages. These packages are then included in entity and 

architecture descriptions with the use clause. The mm_types package referenced in this example is 

shown in Figure 14. An interesting aspect of this package is the use of incomplete types to specify 
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use work.mm_types.all; 

entity nun is 

port (reset,start : in boolean; 

mem: inout memory); 

state (ip : address; 

reg : regfile); 

sensitive to start or reset or 

ip'event; 

ensures 

(reset and ip'post = 0) or 

(not reset and 

((ins(mem(ip)) = jump and 

ip'post=addr(mem(ip))) 

or (ins(mem(ip)) = load and 

((am(mem(ip)) = ab and 

reg(rnum(mem(ip)))'post = 

addr(mem(ip))) or; 

(am(mem(ip)) = imm and 

reg(rnum(mem(ip)))'post = 

mem(ip +1)) or 
(am(mem(ip)) = ind and 
reg(rnum(mem(ip)))'post = 
mem(addr(inem(ip)))) or   : 

(am(mem(ip)) = rel and 
reg(rnum(mem(ip)))'post = 
mem(ip + addr(mem(ip)))))) 

Figure 13: The Move Machine requirements represented as an instruction interpreter. 

or  (ins(mem(ip)) = store and 
((am(mem(ip)) = ab and 

mem(addr(mem(ip)))'post = 
reg(rnum(mem(ip)))) or 

(am(mem(ip)) = imm and 
mem(ip +1) = 
reg(rnum(mem(ip)))) or 

(am(mem(ip)) = ind and 
mem(mem(addr(mem(ip)))) = 
reg(rnum(mem(ip)))) or 

(am(mem(ip)) = rel and 

mem(ip + addr(mem(ip))) = 

reg(rnum(mem(ip))))))) 

and ((ins(mem(ip)) = store or 

ins(mem(ip)) = load) and 
((am(mem(ip)) /= imm and 

ip'post = ip'post+1) 
or (am(mem(ip)) = imm and 

ip'post = ip'post+2)))); 
end mm; 
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package mm_types is 
type address; 
type word; 
includes Instruction(word,address,integer); 
type control is  (fetch,decode,execute,]ialt); 
type memory is array(0 to 256) of word; 
type regfile is array(0 to 15) of word; 

end mm_types; 

Figure 14: Package declaring types used in the Move Machine. 

address and word, VHDL uses incomplete types to allow references to a type before the type is 

completely defined (such as in an access type). One use of this is to allow a record to contain a 

pointer to another record of the same type (i.e. to construct a list). 

In VSPEC, incomplete types are used for a slightly different purpose. The type definitions 

for address and word are incomplete because no implementation is defined. They are declared 

to be types, but no additional information is provided. These incomplete types will be given 

characteristics by the specification, but ho specific implementation is implied or mandated. Thus, 

the designer must select an implementation at a lower abstraction level. Using incomplete types 

allows the designer to specify a type's characteristics without specifying its implementation. 

The characteristics of the address and word types are defined in the LSL Instruction trait. 

This trait is included in mm types using a yspBC includes clause (see Section 2) and the trait is 

shown in Figure 15. The Instruction trait provides definitions for conversion functions that allow 

instructions, register numbers and addresses to be obtained from memory words. In the final format 

of the Move Machine instructions (not shown in this paper), this would be implemented by defining 

which bits of a memory word encode the instruction, register number and address. However, when 

specifying the initial requirements of the device, such details should not be considered. All that 

must be specified is that instructions, register numbers and addresses can be obtained from memory 

words. This is exactly what the LSL description allows us to say. 

Once the Move Machine's initial requirements are defined, the device can be broken up into an 

abstract architecture and each of the components can be synthesized individually. For a CPU such 
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Instruction(W,A,N): trait 

includes 
Natural(N) 

mode enumeration of abs, imm, ind, rel 

instruction enumeration of halt, jump, load, store 

introduces 
am: W —*  mode 
addr: W —► A 
ins: W —+ instruction 
rnum: W —► N 

Figure 15: LSL support functions for treating memory contents as instructions. Basic types and 
conversions are denned. 

as the Move Machine, one such architecture is the canonical fetch-decode-execute structure. An 

instruction is retrieved, the addressing modes are decoded and dereferenced, and the instruction is 

executed on its operands. Effectively, the Move Mächine is now three components that execute in 

sequence. 

Figure 16 shows the fetch-decode-execute architecture for the Move Machine. The signals mem, 

reg, IP, IR, EA and CNTL exchange memory, registers and control values between components. 

The requires and ensures clauses for each component describe transformations performed on 

memory and register values while the sensitive to clauses uses the control value indicates what 

component(s) should be active. 

Each component's sensitive -to clause indicates that it should be active when its execution 

phase begins. As with the instruction interpreter, the machine starts by turning on the reset 

signal. This causes the fetch component to activate and sets the instruction pointer to 0. After 

reset turns off, all components are inactive until the start signal is asserted, fetch's sensitive 

to clause is the only sensitive to clause satisfied by this action, so fetch is the only component 

that activates. All other components have no affect on the concrete state of the architecture. The 

fetch iComponent retrieves the Current instruction from memory and places it in the instruction 

register (IR). It also sets the cütl signal to decode. 
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use work.mm_types.all; 

architecture mm_fde of mm is 

component fetch 

port (reset,start : in boolean; 

mem: in memory; 

ip : inout address; 

ir : out word; 

cntl: inout control); 

end component; 

component decode 

port (mem: in memory; 

ip: in address; 

ir: in word; 

ea: out address; 

cntl: inout control); 

end component; 

component execute 

port (mem: inout memory; 

reg: inout registers; 

ea: in address; 

cntl: inout control); 

end component; 

signal CNTL: control; 

signal IP : address; 

signal IR : word; 

signal EA : address; 

signal reg : regfile; 

begin 
bl: fetch port map (reset,start, 

mem,IP.IR,cntl); 

b2: decode port map (mem,IR,EA,CNTL); 

b3: execute port map (memi,reg,EA,CNTL); 

end mm_fde; 

use work.mm_types.all; 

entity fetch is 

port(reset,start : in boolean; : 

mem: in memory; 

ip : input^address ;^ ;:->-..-.... 
ir : out word; 

cntl: inout control); 

sensitive to start or reset or 

cntl=fetch; 

modifies ir,cntl; 

requires truej 

ensures.:; ; 

(reset and ip'post =0) 

or (not reset and 
: -ir' post=mem ( ip) 

liiand cntl'post=decode); 

end fetch; 

use work.mm_types.all; 

entity decode is 

port (mem: in memory; 

ip: in address; 

ir: in word; 

ea: out address; 

cntl: inout control); 

sensitive to cntl=decode; 

modifies ea,cntl; 

requires true; 

ensures 

: ((am(ir) = ab and 

ea'post=addr(ir)) or 

(am(ir) = imm and 

ea'post=ip+l) or 

(am(ir) = ind and 

ea'post=mem(addr(ir))) or 

(am(ir) = rel and 

ea'post=ip+addr(ir))) 

and cntl,post=execute; 

end decode; 

use work.mm_types.all; 

entity executels 

port(mem: inout memory; 

ip: inout address; 

:; ir: in word; 

reg: inout regfile; 

ea: in address; 

cntl: inout control); 

sensitive to cntl=execute; 

modifies mem,reg,ip,cntl; 

requires true; 

ensures 

(ins(ir) = jump and 

ip'post=addr(ir) and 

cntl'post=fetch) 

or (ins(ir) = load and 

reg(rnum(ir))'post=mem(ea) and 
cntl'post=fetch and 

((am(ir) = imm and 

ip'post = ip+2) or 
(am(ir) /= imm and 

ip'post = ip+1))) 

or (ins(ir) = store and 

mem(ea)'post=reg(rnum(ir)) and 

cntl'post=fetch and 

((am(ir) = imm and 

ip'post = ip+2) or 

(am(ir) /= imm and 

ip'post = ip+2))) 

or (ins(ir) = halt and 

cntl'post=halt); 

end execute; 

Figure 16: High level fetch-decode-execute architecture for the Move Machine CPU 
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The only component whose sensitive to clause is satisfied at this point is decode. This 

component calculates the effective address based on the addressing mode specified by the instruction 

in the IR and sets the cntl signal to execute. The execute component then manipulates the 

registers and memory based on the current instruction. When a load, store or jump instruction 

is executed, execute sets the cntl signal to fetch which causes the fetch component to activate 

and the process starts again. If the halt instruction is processed, execute sets cntl to halt. This 

makes all three component's sensitive to clauses false and the concrete state of the architecture 

does not change again until something (such as activating reset) outside of nun changes it. 

5    Related Work 

5.1    Software Architecture 

The research area most closely related to abstract architecture representation in VSPEC is software 

architecture [8]. Research in this field has led to the development of several architecture description 

languages, including UniCon [23], WRIGHT [3, 4] and RAPIDE [16, 17]. Each of these languages 

allow the definition of components and connectors to define a software architecture. This is similar 

to the VHDL notion of a structural architecture described in this paper. 

Shaw's UniCon language [23] is one example of an architecture description language. A UniCon 

description consists of component and connector definitions. Each of these definitions gives the 

type (such as Filter or Process for components and Pipe or FilelO for connectors), association units 

(component players and connector roles) and an implementation for the component or connector. 

The primary product of the UniCon compiler is Odinfiles, something similar to makefiles that can 

be used to construct executables for the described architecture. Thus, one of the main products of 

a UniCon description is a facility that is used to construct an executable version of the described 

architecture. This is very different from a VSPEC abstract architecture which is used to verify 

that the class of solutions defined by the architecture implements the requirements specified by the 
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VSPEC description of the component. 

The WRIGHT architecture description language [3,4] by Allen and Garlanis of particular interest 

when discussing abstract architectures in VSPEC. A WRIGHT description consists of a collection 

of components interacting via instances of connector types. Each part of a WRIGHT description 

is denned using a variant of CSP [11]. Unlike VSPEC's use of CSP to define only communications 

between components, WRIGHT descriptions use CSP to define the behavior of components as well. 

WRIGHT'S CSP descriptions define the sequence of events that occur in a component or connector. 

Components and connectors interact when one component/connector observes an event provided 

by another. This may cause the second component/connector to provide events that cause further 

interactions. These interactions are all described using CSP. 

RAPIDE [16, 17] is an executable architecture description language designed for prototyping 

architectures of distributed systems. Ä RAPIDE architecture consists of a set of module specifica- 

tions (called interfaces), a set of connection rules defining communication between interfaces and 

a set of formal constraints that define legal patterns of communication. A RAPIDE architecture 

is executed to produce a partially ordered set of events (poset) that represents the dependencies 

between events in the architecture. The RAPIDE tools can then verify this poset does not violate 

the formal constraints defined in the architecture. A major difference between RAPIDE and VSPEC 

is that VSPEC descriptions are not executable. They are intended for formal analysis. 

5.2    Other VHDL-Relätid Specification Languages 

Odyssey Research Associates (ORA) is developing Larch/VHDL, an alternative Larch interface 

language for VHDL [13]; Larch/VHDL is targeted for formal analysis of a VHDL description and 

ORA is defining a formal semantics for VHDL using LSL. The LSL representations are used in a 

traditional theorem prover to verify system correctness. Larch/VHDL annotations are added to a 

specific VHDL description to represent proof obligations for the verification process. In contrast to 

this, a VSPEC abstract architecture represents the requirements of a class of solutions that satisfy 
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a specification (also given in VSPEC). 

Augustin and Luckham's VAL [6] is another attempt to annotate VHDL. The purpose of a 

VAL annotation to a VHDL description is to document the design for verification, VAL provides 

mechanisms for mapping a behavioral description to a structural description. Two VAL/VHDL 

descriptions of a design can be transformed into a self-checking VHDL program that is simulated 

to verify that the two descriptions implement the same function. This differs from VSPEC because 

it does not allow the description of a class of solutions that implement a specification. Instead, it 

allows the verification that a structural description correctly maps to a behavioral description for 

the entity. 

5.3    Larch Interface Languages 

Larch interface languages have been developed for a variety of programming languages, including 

LCL [9], Larch/C++ [15] and LM3 [14], interface languages for C, C++ and Modula-3, respectively. 

Each of these languages allow the description of the pre- and post-conditions for procedures and 

functions in a sequential programming language. The portions of these languages that allow this 

type of specification (Le. requires, and ensures clauses) are also found in VSPEC where they are 

used to specify the transformation performed by a single component. However, since C, C++ and 

Modula-3 are sequential languages, their Larch interface languages do not have to deal with how the 

Larch-specified procedures and functions interact when two procedures are executing concurrently 

as is the case with VSPEC entities. At the present time, we are not aware of other work in the Larch 

community where pre and post-conditions are used to specify the behavior of components in an 

abstract architecture. 
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6    Conclusion 

6.1    Summary 

The ability to evaluate architectural decisions early in the design process enhances overall design 

quality by allowing architectural errors to be discovered when they are less expensive to fix. Un- 

fortunately, VHDL does not allow evaluation until a simulatable model exists. For many complex 

systems, simulatable models appear late in the design process making architectural errors difficult 

to correct. An alternative to simulation for evaluating architectural decisions is formal analysis of 

abstract architectures at the requirements level. An abstract architecture is a set of interconnected 

components where the requirements of each component are known but the implementation is not. 

This paper presented VSPEC'S support for describing and evaluating abstract architectures during 

requirements specification. 

A VSPEC abstract architecture is formed by instantiating each component in a VHDL structural 

architecture with a VSPEC entity. The VSPEC description of an entity includes a pre-condition, 

post-condition and activation condition that describe the entity's functional requirements. If the 

current state of the system satisfies the activation condition for one of the components in the 

abstract architecture^; that component's pre-condition must hold and the component must satisfy 

its post-condition in the next state. A refinement of a VSPEC entity can be compared with the 

VSPEC specification using weak bisimulation. If some sequence of state changes in the refinement 

yields the correct single state change in the higher-level description, weak bisimulation holds. This 

method can be used to formally determine if a VSPEC abstract architecture is a refinement of the 

VSPEC description of the entity it implements. 

6.2    Status and Limitations 

VSPEC provides a specification capability most appropriate for high levels of abstraction. It is 

anticipated that designers will;represent system requirements with VSPEC, gradually refining re- 
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quirements into architectures and eventually a VHDL design. During requirements specification 

when a designer is defining the essential requirements of a system, VSPEC is useful for evaluating 

the impact of architectural decisions. When design details are available, VHDL simulation is a 

more suitable analysis activity. Although VSPEC can model design detail, formal analysis is far less 

pragmatic than VHDL simulation in such situations. 

A potential limitation to the VSPEC approach is verifying the refinement of VSPEC require- 

ments into VHDL design representations. Formalizing the tie between VSPEC and VHDL to support 

verification and comparison with simulation results is the subject of current investigations. In 

addition, techniques for automatically synthesizing VHDL from VSPEC are currently under develop- 

ment [21, 20]. Studies of error analysis reports for safety-critical software systems suggest that over 

90% of safety related errors arise from incorrect or incomplete specifications, not transformation 

of requirements into implementations [18]. This suggests that the use of techniques such as those 

proposed here are warranted even before a complete verification path between VSPEC and VHDL 

exists. 
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Abstract 
VHDL provides a means for operationally defining 

behavior of digital components and for describing com- 
position of components. However, the operational and 
structural specification techniques require specification 
of a single design artifact. They do not provide an ap- 
propriate means for representing requirements. This 
paper describes VSPEC, a specification language used 
in conjunction with VHDL to axiomatically describing 
component requirements, VSPEC supports specifica- 
tion of constraints and performance requirements as 
well as the function of a component. Using the VHDL 
architecture construct, VSPEC can also specify re- 
quirements for abstract system architectures. 

1    Introduction 
VSPEC is motivated by the need to specify digital 

system requirements in an implementation indepen- 
dent fashion. Qualitatively, system requirements spec- 
ify "what" a system should achieve without specifying 
"how" it should be done. Design specifications are 
developed from requirements and describe "how" re- 
quirements are implemented. Älthbügh VHDL [6] sup- 
ports specification of specific designs, it does little to 
support requirements specification. In addition, VHDL 
does not support a consistent representation of con- 
straints. 

Lack of requirements and constraint specification 
has little effect when designing systems requiring few 
levels of abstraction. However, there is ä growing need 
for systematic design of very large, abstractly defined 
systems. When starting from extremely high levels of 
abstraction, the structure of the eventual design is not 
reflected in requirements. Thus it is difficult to relate 
an operational specification back to the requirements 
it is to exhibit.   In such: situations, explicit require- 

ments and constraint specification allow a designer to 
work at a high level of abstraction without interference 
from the details of lower levels. 

This paper describes VSPEC, an extension of VHDL 
which addresses the problem of representing require- 
ments explicitly. In the remainder of this paper, 

|VHDLrs method of design specification and VSPEC's ad- 
ditions are presented. The structure of VSPEC and its 
associated formal basis are presented. How VSPEC and 
VHDL can be used to specify abstract architectures is 
presented along with the relationship between VSPEC 

and algebraic specification. 

1.1    VHDL Design Specification 
Specification of a design in VHDL involves 3 ba- 

sic constructs: (1) the entity specifies the inter- 
face of a system; (2) the architecture specifies the 
behavior and/or structure of a system; and (3) the 
configuration associates a specific architecture 
with an entity. The designer specifies a device in- 
terface using the entity construct, develops one or 
more structural or behavioral descriptions using the 
architecture and selects a specific implementation 
for the entity using the configuration construct. 

Each architecture associated with an entity rep- 
resents a potential design at some level of abstraction. 
Structural specifications indicate how components are 
composed to construct a solution. Behavioral speci- 
fications describe the behavior of a solution using an 
Ada-like programming language. In both cases, spe- 
cific candidate designs are represented. A specific de- 
sign is selected by comparing the behavior of that de- 
sign with the set of system requirements. 

Representation of system requirements in VHDL is 
restricted to an operational style - a "program" is writ- 
ten that describes an artifact having desired character- 
istics. Although the operational style is an excellent 
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means for describing specific designs, it is not ideal for 
describing system requirements for several reasons. 

1. It forces representation of a specific design, thus 
introducing implementational bias. 

2. It does not adapt easily to representation of per- 
formance constraints. 

3. Unimportant characteristics are indistinguishable 
from required features of the design. 

4. Users must deal with unnecessary detail. 

Figure la is an example VHDL entity representing 
a component that searches a collection of records for 
a specific record. Note there is no indication of what 
the component must accomplish or what performance 
constraints exist for it. The result is a black-box view 
of the component with no indication of requirements, 
as shown in Figure lb. An architecture can be devel- 
oped, but such an architecture exhibits the negative 
characteristics discussed. 

2    VSPEC Requirements Specification 
A solution to requirements representation in VHDL 

is VSPEC, a Larch interface language [3] developed for 
VHDL synthesis. The Larch family of specification lan- 
guages consists of a collection of application specific 
interface languages and a common shared language. 
Each interface language defines sets of specification 
primitives containing useful constructs in a target ap- 
plication language. The shared language serves two 
purposes. First, it provides a target formal system 
for translating interface specifications. Second, it pro- 
vides a language for writing auxiliary specifications 
and handbooks of common components. 

The traditional shared language is a first order alge- 
braic language call LSL. In VSPEC, the primary shared 
language is REFINE [1], due to its support for trans- 
formation and synthesis, its formal basis, and its po- 
tential for execution. 

Figure 2a shows the VSPEC representation for the 
same search as the VHDL entity in Figure 1. The 
added clauses specify input conditions, output condi- 
tions and constraints. Figure 2b shows a graphical 
representation of the same information. The VSPEC 

definition indicates that Vcc must be less that or equal 
to 5 and that the area (x x y) must be less than 0.3. 
No constraints are place on heat dissipation (H), clock 
speed (Clk) or timing. 

The specification associated with Figure 2 avoids 
many of the problems with the operational specifi- 
cation style. A search routine is specified indepen- 
dently of any implementation by the ensures clause. 
Only characteristics necessary for specifying a search 

are included. Constraints are clearly specified in the 
constrained by clause and do not interfere with the 
functional specification. The designer need not be con- 
cerned with the details of the search algorithm at the 
requirements level. 

3 The VSPEC entity- 

All VSPEC annotations affect only the VHDL entity 
structure. No changes are made to architecture 
structures or any other VHDL structure. VSPEC clauses 
are grouped into four broad classes: (1) those that de- 
fine a devices function; (2) those that define internal 
state variables; (3) those that define constraints; and 
(4) those that relate VHDL data structures to formal 
representations. 

3.1    VSPEC Clauses and Logic 
VSPEC is a collection of keywords followed by logical 

sentences. The keywords indicate what requirement 
each logical sentence specifies. Each logical setence is 
written in typed first-order predicate calculus. Exten- 
sions to the logic allow use of sets and sequences in 
specifications. The logic follows the basic syntax of 
REFINE , the language used for system synthesis, to 
support easy translation and some degree of execution. 

There are six basic VSPEC clauses: 

- requires - specifies sufficient conditions on in- 
puts and state for entity execution 

- ensures - specifies necessary conditions on out- 
puts and state following entity execution 

- constrained by - specifies non-functional per- 
formance constraints 

- modifies - specifies what the entity may alter 
- based on - associates VHDL data types with RE- 

FINE definitions 
- state - defines a collections of variables that rep- 

resent the entity's internal state 

VSPEC clauses may only access variables and sig- 
nals defined in an entity port, the state clause or 
quantified in a logical expression. VSPEC is strongly 
typed and all variables must have an associated type, 
including those bound by quantifiers. Although RE- 

FINE allows type inferencing, VSPEC does not. 
All VSPEC clauses are optional. Only the based on 

clause may appear more than once in an entity. The 
format of the requires, ensures, and constrained 
by clauses is a keyword followed by a logical expression 
and a semicolon. 

<keyword> <logical-expression> ";" 
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entity search is 

port (input: in array of element; 

k: in keytype; 
output: out element); 

end search; 

Component 

In ??? 
1 

Out 

a) b) 

Figure 1: A VHDL entity describing a record search. 

entity search is 
port  (input:  in array of element; 

k:   in keytype; 
output:  out element); 

modifies output; 
requires true; 
ensures 

output = e <=> key(e)=k and 
e in input  I;: 

constrained by 

power =< 5 and 

area =< .3 
end search; 
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Figure 2: A VSPEC entity describing a record search. 
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The format of the state and modifies clauses is a 
keyword followed by a collection of variables, option- 
ally typed. 

<keyword> <variable>[, <variable>] ";" 

The format of the based on clause is a type name 
followed by the based on keyword and a logical ex- 
pression. 

<type> based on <logical-expression> ";" 

3.2    Functional Requirements 
The functional requirements of a VSPEC ent ity are 

defined using the requires and ensures clauses. The 
requires clause specifies a logical expression, I(x), 
that must be true for the entity to perform its op- 
eration. The ensures clause specifies necessary state 
conditions, 0(x,z), resulting from entity execution 
given a particular input. Formally, any function im- 
plementing an entity must obey the condition: 

Wx:D»I{x)^-0[x,F(x)) (1) 

3.2.1 The requires Clause 

The requires clause, I(x), is a logical expression de- 
fined over all ports, signals and variables that may 
provide input to the transform. I(x) is true when x is 
a valid input. I{x) is a precondition for entity execu- 
tion. When it is true, the entity must produce valid 
output. 

3.2.2 The ensures Clause 

The ensures clause, 0(x+z), is a logical expression 
defined over all ports, signals and variables. 0(x, z) is 
true when z is a valid output given x as input. 0{x,z) 
is a postcondition for entity execution and states nec- 
essary conditions placed on entity outputs and state 
variables. 

3.3    Constraints 
Constraints express characteristics an entity must 

exhibit that are not a part of its function. For exam- 
ple, heat dissipation constraints frequently affect se- 
lection of valid designs, but heat is a side effect of the 
technology. It has little to do with input and output 
relationships. 

Althpugh constraints do not affect function, they 
are critical in hardware system design. In VSPEC 
there axe two sources of constraint. The first is the 
constrained by clause that specifies several perfor- 
mance constraints common in hardware design. The 
second is the modifies clause that limits what the 
entity can alter in performing its function. 

3.3.1 The constrained by Clause 

The constrained by clause is a conjunction of prede- 
fined variables and relations with fixed values. VSPEC 
currently supports providing constraint information 
for heat dissipation, area, clock speed, power con- 
sumption and pin-to-pin timing. To specify con- 
straint, one chooses a constraint type and uses it in 
a relation. For example, to specify heat dissipation 
less than 1 watt and power consumption less than 10 
watts, the logical sentence heat =< 1 and power =< 
10 is included in the constrained by clause. 

Timing requires a somewhat more complicated rep- 
resentation. Here one specifies an interval between two 
pins, then relates that interval to a constant time. For 
example, (a<->b) =< 10 specifies that the time be- 
tween a signal arriving at port a and port b producing 
a signal must be lass than 10. 

3.3.2 The modifies Clause 

The modifies clause specifies a collection of ports, 
signals and variables that may be modified by the en- 
tity. The modifies clause indicates what effects and 
side effects are allowed. Only outputs may be speci- 
fied in a modifies clause. Of particular interest is the 
ability to specify the direction of buffer type ports. 

3.4 Abstract Data Types 
The semantics of VHDL data types must be defined 

before reasoning about their properties is possible. El- 
emental data types such as integer and bit have def- 
initions loaded as a part of the VSPEC system. Thus, 
when using a basic VHDL type, the semantics of that 
type are present by default. 

3.4.1    The based on Clause 

User defined data types such as arrays and records 
must be defined as a part of the definition process 
because they cannot be defined a priori. This is ac- 
complished using the based on predicate. The log- 
ical expression defined in a based on clause defines 
the semantics of a user defined type. To support this 
specification process, VSPEC include standard Schemas 
for defining sets, sequences, arrays and tuples. These 
Schemas are used in conjunction with parameter mor- 
phism to define associated VHDL types specific to user 
needs. 

3.5 System State 
The notion of system state is typically not sup- 

ported directly by axiomatic specification techniques. 
A computation unit is defined by a transform that re- 
lates inputs to outputs.  Thus, to include state in a 
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specification it must be specified as an input to the 
transform. However, specification of state-based sys- 
tems is natural to hardware designers and suggest- 
ing that state representation be an input to the VHDL 
entity is not natural. Using the two-tiered specifica- 
tion approach state can be managed by: (a) support- 
ing the definition of local state variables; and (b) using 
state maintaining features of port signals. Instead of 
specifying a function that maps input signals defined 
in the port definition to outputs in the same port def- 
inition, specify a function that maps inputs and state j 
maintaining objects to outputs and state maintaining 
objects. 

3.5.1 The state clause 

The state clause is a collection of variables that store 
state within a VSPEC entity. Like VHDL variables 
and signals, these variables maintain their values from 
one invocation of the entity. All state variables are 
defined locally and are not visible outside the entity. 

3.5.2 Ports 

Variables defined an entity's port definition may 
maintain their state. Variables of type buffer may 
be inputs or outputs and are not re-initialized unless 
a signal of some type is driving them. Variables of 
type out and inout also maintain their state. 

4 Generic Architectures in VSPEC 
VSPEC supports representation of high level, ab- 

stract architectures using the architecture construct 
from VHDL. No modifications or annotations are nec- 
essary - simply specify entity structures accessed by 
the architecture using VSPEC. 

Figure 3 represents a two component architec- 
ture for solving the element search problem. The 
architecture bateh-seq represents a two step solu- 
tion of sorting'the input list and using ä binary search 
to find the desired record. Although the requirements 
of the sorting algorithm are specified, no algorithm is 
presented. Thus, the designer may instantiate the sort 
with any appropriate algorithm. Application of such 
an architecture represents an iterative refinement pro- 
cess common to design activities. Additionally, VSPEC 
is adept at representing such refinements where an op- 
erational language may fall short. 

5 VSPEC and Algebraic Specification 
Any VSPEC definition can be transformed into a 

formal definition. The form of this definition is an al- 
gebraic specification based on an extension of domain 

theories as defined in CYPRESS [7] and KIDS [9, 8]. The 
basic form of a domain theory is a tuple consisting of 
the function domain (D), range (R), input precondi- 
tion ;(I(x:D)) and output postcondition (0(x:D,z:R)) 
commonly referred to as a DRIO model. The DRIO 
model for any VSPEC entity can be constructed using 
the following rules: 

D = t\ x t2 x ... x tn where tk is the sort represent- 
ing the type associated with an in, inout, or 
buffer ports, or a state variable 

R = t\ x t2x ■.. x tm where tj is the sort represent- 
ing the type associated with an out, inout, or 
buffer port listed in the modifies clause, or a 
;state variable listed in the modifies clause 

I(x :D)—Iv(x:D) where Iv(x : D) is the logical 
sentence defined by ^ne reqUires clause 

0{x :D,z:R) =Ov{x :D,z:R) where Ov(x : D,z : 
R) is the logical sentence defined by the ensures 
clause 

:':'::.: Additionally, constraints must be defined as a part 
of Üie algebraic statement. The simplest means of ac- 
complishing this is to simply include predicates rep- 
resenting constraints in the output function of the 
DRIO. However, constraints are not functional. Spec- 
ifying constraints in their own clause is an attempt to 
separate constraint from function. Additionally, con- 
straints in their current form do not depend on vari- 
ables defined in the entity1. Thus, constraints are 
added to the DRIO model through a specification mor- 
phism that adds logical representations of constraints. 
The DRIO model becomes a DRIOC model. 

^C(c1:C1,...,cn:Cn) = Cv(c1:C1,...,cn:Cn) 
where Ck is a constraint variable such as heat or 
area, Ck is a sort associated with a constraint 
variable and Cv is the logical expression defined 
in the constrained by clause 

The goal of the design activity is to find and archi- 
tecture that performs the transform F : D -> R such 
that: 

Vx:D*I(x)=$>0{x,F{x)) (2) 

Thus, the goal of the synthesis activity is generation 
of a transform mapping the current state and inputs 
into the next state and outputs such that the output 
condition is satisfied. 

*A more complex constraint model could certainly include 
variables and signals. Our current constraint model does not 
allow this. 
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architecture bat-seq of search is 
component sorter 

port  (input:  in array of element; 
output:  out array of element); 

component bin_search 
port  (input:  in array of element; 

key:  in integer; 
value:  out element); 

begin 
bl:   cl port map(x.y); 
b2:  c2 port map(y,z); 

end bat-seq; 

entity sort is 
port  (input:   in array of element; 

output: out array of element); 
modifies output; 
ensures bag(input)  = bag(output)  and 

sorted(output) 
end sort; 

entity bin_search is 
port  (input: buffer array of element; 

k:  in integer; 
value: out element); 

modifies out; 
requires sorted(input); 
ensures 

(fa e:element) 
output = e <=> key(e)=k and 

e in input 
end bin_search; 

Figure 3: VSPEC representation of a search architecture using a batch sequential approach. The original list is 
sorted and a binary search finds the desired object from the resulting list. 

6 Related Work 
As VSPEC is a Larch interface language for VHDL it 

borrows from the construction of other interface lan- 
guages. Specifically, VSPEC is styled after the LM3 
Larch interface language for Modula-3 [5]. Odyssey 
Research Associates is currently developing an alter- 
native Larch interface language fbr: VHDL [4]. This lan- 
guage does not support representation of constraints 
and is targeted for formal analysis rather than synthe- 
sis. ORA's interface language also differs in its imple- 
mentation of time. An absolute time based temporal 
logic is used in specifying the function of ah entity. 
Thus one can specify that a predicate becomes true at 
a specific time using the notation; "P(x)@t". 

Another attempt to annotate VHDL is VAL [2]. VAL 

annotates all aspects of the VHDL design. All signals 
in the namespace of the VHDL representation are in 
the namespace of the VAL annotation. Thus, VAL an- 
notates specific VHDL designs rather than represent 
requirements. ORA's interface language is similar in 
this respect, but does support separate requirements 
definitions/ 

7 Riture Work 
Current VSPEC research involves pursuing domain 

specific support for specification activities and sup- 
port for formal synthesis. An important aspect of any 
Larch language is its associated handbook. A hand- 

book is simply a collection of reusable theories defined 
in the shared language. Handbook theories represent 
commonly used structures, algorithms and character- 
istics as well as domain specific information. For VHDL 
we are implementing theories to represent standard 
VHDL types, low level logic functions and conversion 
routines. In addition, we are working on libraries to 
support specifications involving signal attributes such 
as event, stable, and delay. Theories for pin-to- 
pin timing, heat dissipation, power consumption, area 
and clock speed have been implemented to support 
constraint checking during the design process. 

The isomorphic relationship between VSPEC and al- 
gebraic specifications is being used to exploit work in 
formal synthesis, specifically, developing morphisms 
between algorithms [10]. This involves development 
and implementation of theories useful in constructing 
multicomponent systems such as the batch sequential 
search algorithm appearing earlier in this paper. 
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Abstract 
Systems engineering of computer-based systems 

demands explicit representation of functional re- 
quirements as well as constraints at each level of 
design abstraction. However, traditional design rep- 
resentation languages suck as VHDL and VERILOG 
do not support requirements representation indepen- 
dent from implementation. This work presents a 
axiomatic specification language designed to sup- 
port requirements representation. VSPEC annotates 
VHDL entity structures supporting declarative spec- 
ification of input preconditions, output postcondi- 
tions and performance constraints as a part of the 
design representation. The declarative nature of the 
specification supports requirements definition inde- 
pendent of design representation. 

1    Introduction 

It is commonly understood that engineering is 
a requirements driven activity. Problem require- 
ments are stated and the engineering goal is to 
produce an artifact satisfying those requirements. 
Requirements can be broadly categorized into two 
classes: (1) functional requirements; and (2) con- 
straints. Although the distinction between these 
two classes is frequently debated, functional require- 
ments describe the intended transformation from 
input to output while constraints describe other 
non-functional restrictions placed on the solution. 
Both functional requirements and constraints must 
be represented and accounted for in a successful sys- 
tems engineering activity. 

VHDL [1] is a widely accepted design specification 
language for digital systems. It supports represen- 
tation of artifacts at multiple levels of abstraction 

as well as providing both behavioral and structural 
descriptions. Unfortunately, VHDL supports only 
an operational specification style and provides no 
standard means for representing constraints. Thus, 
when used at the requirements level, VHDL forces 
the user to make implementation decisions early in 
the design process. As the desired result of require- 
ments analysis is a description of "what" without 
regard to "how", VHDL is not an appropriate re- 
quirements representation language. In addition, 
constraint information frequently used to choose 
between design alternatives is not explicitly repre- 
sented. 

VSPEC is a Larch[2] interface language for VHDL 
that supports declarative specification of both func- 
tional requirements and constraints. VSPEC defines 
functional requirements using an input precondition 
and output postcondition defined over the ports and 
internal state of a VHDL entity. VSPEC defines con- 
straint information using standard representations 
of heat dissipation, clock speed, delay time, area 
and power consumption limits. In addition, other 
constraint types may be defined by the user. 

This paper describes the VSPEC language and 
how it is used to define systems level requirements. 
A brief presentation of VHDL is given and problems 
identified. The basic structure of VSPEC is then de- 
scribed followed by specifics of language constructs. 
Also presented is a means for using VSPEC and 
structural VHDL to define high-level architectures, 
thus supporting high level decomposition. Finally, 
the role of VSPEC in the design process is shown 
along with examples of its use. 
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2    VHDL Design Specification 

Specification of a design in VHDL involves 3 basic 
constructs: (1) the entity specifies the interface of 
a system; (2) the architecture specifies the be- 
havior and/or structure of a system; and (3) the 
configuration associates a specific architecture 
with an entity. The designer specifies a device in- 
terface using the entity construct, develops one or 
more behavioral or structural descriptions using the 
architecture and selects a specific implementation 
for the entity using the configuration construct. 

Each architecture associated with an entity 
represents a potential design at some level of ab- 
straction. Behavioral specifications describe the 
behavior of a solution using an Ada-like program- 
ming language. Structural specifications indicate 
how components are composed to construct a solu- 
tion. In both cases, specific candidate designs are 
represented. A specific design is selected by com- 
paring the behavior of that design with the set of 
system requirements. 

Representation of system requirements in VHDL 
is restricted to an operational style - a "program" 
is written that describes an artifact having desired 
characteristics. Although the operational style is 
an excellent means for describing specific designs, 
it is not ideal for describing system requirements 
for several reasons. 

1. It forces representation of a specific design, 
thus introducing implementational bias. 

2. It does not adapt easily to representation of 
performance constraints. 

3. Implementation/representation specific details 
are indistinguishable from required features of 
the design. 

4. Users must deal with unnecessary detail. 

Figure la is an example VHDL entity repre- 
senting a component that searches a collection of 
records for a specific record. Note there is no indi- 
cation of what the component must accomplish or 
what performance constraints exist for it. The re- 
sult is a black-box view of the component with no 
indication of requirements, as shown in Figure lb. 
An architecture can be developed, but such an ar- 
chitecture exhibits the negative characteristics dis- 
cussed. 

entity search is 
port (input: in array of element; 

k: in keytype; 
output: out element); 

end search; 

search 

**   element 

b) 

Figure 1: A VHDL entity describing a record 
search. Note that the entity defines only the in- 
terface. The architecture describes the function 
operationally. 

3    VSPEC Requirements Specification 

A solution to requirements representation in 
VHDL is VSPEC, a two-tiered specification language 
developed for VHDL synthesis. VSPEC is designed 
using concepts developed for Larch [2] interface lan- 
guages for software specification. The Larch family 
of specification languages consists of a collection of 
application specific interface languages and a com- 
mon shared language. Each interface language de- 
fines sets of specification primitives containing use- 
ful constructs in a target application language. The 
shared language serves two purposes. First, it pro- 
vides a target formal system for translating inter- 
face specifications. Second, it provides a language 
for writing auxiliary specifications and handbooks 
of common components. 

The traditional shared language is a first order 
algebraic language call the Larch Shared Language 
(LSL) [3]. In VSPEC, the primary shared language is 
REFINE[4, 5], due to its support for transformation 
and synthesis, its formal basis, and its potential for 
execution. 

Figure 2a shows the VSPEC representation for the 
same search as the VHDL entity in Figure 1. The 
added clauses specify input conditions, output con- 
ditions and constraints. Figure 2b shows a graphical 
representation of the same information. The VSPEC 
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definition indicates that power consumption must 
be less that or equal to 5 mW and that the size 
(x x y) must be less than 5 x 3//m2. No constraints 
are place on heat dissipation (H), clock speed (Clk) 
or timing. 

entity search is 
port (input:  in array of element; 

k:  in keytype; 
output:  out element); 

modifies output; 
requires true; 
ensures 

output = e <=> key(e)=k and 
e in input 

constrained by 
power <= 5 mtf and 
size <= 3 urn * 5 um 

end search; 

a) 

H 

search 

y 

i 

F(ln) 
element ^ 

: 
key     — > 

i x 

t      t 
Vcc      Clk 

element 

Time 

b) 

Figure 2: A VSPEC entity describing a record 
search. The functional requirements and con- 
straints are explicitly represented as a part of the 
entity construct. 

The specification associated with Figure 2 avoids 
many of the problems with the operational speci- 
fication style. A search routine is specified inde- 
pendently of any implementation by the ensures 
clause. Only characteristics necessary for specify- 
ing a search are included. Constraints are clearly 
specified in the constrained by clause and do not 
interfere with the functional specification. The de- 
signer need not be concerned with the details of the 
search algorithm at the requirements level. 

4 The VSPEC entity- 

All VSPEC annotations affect only the VHDL 
entity structure. No changes are made to 
architecture structures or any other VHDL struc- 
ture. VSPEC clauses are grouped into four broad 
classes: (1) those that define a devices function; (2) 
those that define internal state variables; (3) those 
that define constraints; and (4) those that relate 
VHDL data structures to formal representations. 

4.1    VSPEC Clauses and Logic 

VSPEC is a collection of keywords followed by log- 
ical sentences. The keywords indicate what require- 
ment each logical sentence specifies. Each logical 
sentence is written in typed first-order predicate cal- 
culus. Extensions to the logic allow use of sets and 
sequences in specifications. The only variables al- 
lowed in each clause are: (1) ports; (2) variables 
defined in the entitys state clause; and (3) vari- 
ables defined by quantifiers in the sentence. Both 
port and state variables are assumed to be univer- 
sally quantified. The only exception to this rule is 
the constrained by clause where variables defined 
in constraint theories are used exclusively. 

There are six basic VSPEC clauses: 

- requires - specifies sufficient conditions on in- 
puts and state for entity execution 

- ensures - specifies necessary conditions on 
outputs and state following entity execution 

- constrained by - specifies non-functional 
performance constraints 

- modifies - specifies what the entity may al- 
ter 

- based on - associates VHDL data types with 
REFINE definitions 

- state - defines a collections of variables that 
represent the entity's internal state 

- includes - specifies that a shared language file 
containing data types and functions is used in 
the definition 

- assumes - specifies assumptions made in defin- 
ing the device1 

VSPEC clauses may only access variables and sig- 
nals defined in an entity port, the state clause or 
quantified in a logical expression, VSPEC is strongly 
typed and all variables must have an associated 

1This clause is not implemented in the current language 
parser, but will be included in a later release 
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type, including those bound by quantifiers. Al- 
though REFINE allows type inferencing, VSPEC does 
not. 

Logical statements in VSPEC are designed to 
mimic as much as possible the syntax of VHDL. 

This supports ease of use by VHDL users and 
achieves the language specific goals of a Larch in- 
terface language. For example, numerical constants 
follow VHDL format, logical connectives use their 
English names, and predicates defined on signals 
follow the <signal>'<property> convention de- 
fined for VHDL. This changes the standard Larch 
<variable>' representation for the post execution 
value of <variable> to <variable>'post. 

4.2    State-Based Specification 
The VSPEC model uses a classic state-based spec- 

ification approach. The notion of system state is 
typically not supported directly by axiomatic spec- 
ification techniques. A computation unit is defined 
by a transform that relates inputs to outputs. Thus, 
to include state in a specification it must be speci- 
fied as an input to the transform. However, specifi- 
cation of state-based systems is natural to hardware 
designers and suggesting that state representation 
be an input to the VHDL entity is not natural. Us- 
ing the two-tiered specification approach state can 
be managed by: (a) supporting the definition of 
local state variables; and (b) using state maintain- 
ing features of port signals. Instead of specifying 
a function that maps input signals defined in the 
port definition to outputs in the same port defini- 
tion, specify a function that maps inputs and state 
maintaining objects to outputs and state maintain- 
ing objects. 

inputs entity 

l(x) 0(x,z) 

C 

outputs 

Figure  3:    State-based  specification  model that 
forms the basis of VSPEC requirements definition. 

The goal is specifying a function that accepts In- 
put values and the current state and generates out- 
put and a new state. To achieve this, VSPEC spec- 
ifies an input precondition over inputs and state, 
and an output postcondition over outputs and state. 

Figure 3 shows these relationships graphically. F is 
the function of the component, S stores the inter- 
nal state, and C defines constraints. I(x) defines a 
precondition on inputs and state while 0(x, z) de- 
fines a postcondition on outputs and state given an 
input. Finally, C(e) defines a set of constraints the 
device must operate under. 

A device's interface is defined by the VHDL 

entity construct. VSPEC uses these definitions in 
its clauses to reference these signals rather than re- 
defining the interface. VSPEC defines a devices func- 
tion by providing S and stating I{x) and 0(x, z). 
Finally, VSPEC defines constraints by defining pred- 
icates over c, a constraint variable set. 

4.3 Internal State 
The state clause defines a collection of variables 

and initial values defining the internal state of a 
component. These variables are not visible outside 
the entity. State variables maintain their values 
between entity invocations. As with any VSPEC 
symbol, the undecorated state variable name indi- 
cates the value before invocation and the name dec- 
orated with 'post indicates the value after invoca- 
tion. Thus, values before and after invocation are 
accessible in the same definition. 

It is important to note that VHDL ports also 
maintain their values between entity invocations. 
However, ports are visible outside the entity and 
need not be defined in the state clause. The 
state clause defines only new variables necessary 
for internal state components. It is possible (even 
common) for components having no state clause to 
be state based using only port values as state. The 
entire state of a component is the complete set of 
state variables and ports. Like state variables, the 
'post attribute supports accessing both a port's 
pre-invocation and post-invocation values. 

4.4 Functional Requirements 
The functional requirements of a VSPEC entity 

are defined using the requires and ensures 
clauses. The domain, D, of F is the set of all finite 
vectors consisting of: (1) ports providing input; and 
(2) state variables. The range, iZ, of F is the set 
of all finite vectors consisting of: (1) ports generat- 
ing output; and (2) state variables. The direction 
indicators used in VHDL port definitions and the 
modifies clause determine what ports and state 
variables are appropriate for D and R. Note that 
a port or state variable may appear in both D and 
R. 
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The requires clause specifies a logical expres- 
sion, I(x), that must be true for the entity to per- 
form its operation. The vector x is an element of 
D. The ensures clause specifies necessary post- 
conditions, 0(x, z), resulting from entity execu- 
tion given a particular input. The vector z is an 
element of R. Any function, F, implementing an 
entity must obey the condition specified in Equa- 
tion 1. The pre- and post-conditions, I and 0, de- 
fined by the ensures and requires clauses repre- 
sent the entity's functional requirements. 

Vx:D»I(x)^0(x,F(x)) (1) 

Equation 1 defines a synthesis goal considering 
only functional requirements. 

4.5    Constraints 
Constraints express characteristics an entity 

must exhibit that are not a part of its function. For 
example, heat dissipation constraints frequently af- 
fect selection of valid designs, but heat is a side ef- 
fect of the technology. It has little to do with input 
and output relationships. 

Although constraints do not affect function, they 
are critical in system design. In VSPEC, two clauses 
are used to represent, constraints. The first is the 
constrained by clause that specifies several per- 
formance constraints common in hardware design. 
The second is the modifies clause that limits what 
the entity can alter in performing its function. 
The constrained by clause is a conjunction of 
predicates defined over a constraint variable set, c. 
Adding constraints to Equation 1 results in the new 
synthesis goal for F shown in Equation 2. Note that 
C(c) is the conjunction of predicates specified in the 
constrained by clause. 

Vz : D • /(*) => 0(x, F(x)) A C(c)        (2) 

Equation 2 defines a more realistic synthesis goal 
adding constraints to the functional requirements. 
The variables in c are defined by underlying con- 
straint theories and are not defined as a part of 
each entity. When specifying an entity, con- 
straint variables are inherited from the underlying 
constraint theory. The current default constraint 
set supports representation of power consumption, 
heat dissipation, clock speed, pin-to-pin timing and 
area. Users may define additional constraints as 
needed using REFINE to define theories. The new 
theory is added using the includes clause to load 
the definition. 

4.6    Data Types 
The semantics of VHDL data types must be de- 

fined before reasoning about their properties is pos- 
sible. Elemental data types such as integer and 
bit have definitions loaded as a part of the VSPEC 
system. Thus, when using a basic VHDL type, 
the semantics of that type are present by default. 
VSPEC generates formal definitions of RECORD and 
ARRAY types using standard tuple and sequence 
constructs from REFINE. 

5    Architectures in VSPEC 

VSPEC supports representation of high level, ab- 
stract architectures using the architecture con- 
struct from VHDL. A high-level architecture is a 
collection of interconnected component definitions. 
Each component is instantiated appropriately for 
a given problem. High-level architectures provide 
skeletal solutions for commonly used system archi- 
tectures - their use is fundamental in complex sys- 
tem design. Taking a single VSPEC entity and us- 
ing a VHDL configuration statement to assign a 
high-level architecture to it supports incremental 
design activities. 

Structural VHDL defines systems by indicating in- 
terconnection between components. Within a struc- 
tural VHDL architecture, components are iden- 
tified and generic parameters instantiated. These 
components are then used to produce a netlist spec- 
ifying component interconnection. This intercon- 
nection specification is declarative because it simply 
specifies what components are used and how then 
are connected. Rather than extend the structural 
VHDL architecture to represent high-level archi- 
tectures, VSPEC uses it to define interconnections 
between specified components, VSPEC provides re- 
quirements definitions for any or all components in 
the architecture. 

Figure 4 represents a two component architec- 
ture for solving the element search problem specified 
earlier. The architecture batch-seq represents a 
two step solution of sorting the input list and using 
a binary search to find the desired record. 

The architecture references two components, 
a sorter and a bin.search. In typical structural 
VHDL, structural or behavioral descriptions exist 
for each component either decomposing the solu- 
tion further or describing a behavioral solution. If 
the entity representation for each component is 
annotated with VSPEC, a third option is possible. 
No architecture is associated with either entity, 
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thus specifying only component requirements. Now 
three specification options exist: (1) requirements 
for each component may be specified using VSPEC; 
(2) the implementation of each component may be 
specified using structural VHDL; or (3) the behavior 
of each component may be specified using behav- 
ioral VHDL. Realistically, all three will be used at 
any given time due to varying stages of component 
design. 

Although each component's requirements are 
specified, no component algorithms or assemblies 
are presented. However, this new requirements 
specification exists at a lower level of abstraction, 
because some structural detail has been added, ex- 
cluding some potential solutions and decreasing the 
overall abstraction level. Application of such an 
architecture represents an incremental refinement 
process common to design activities. By assign- 
ing bat-seq to the entity from Figure 2, using a 
configuration statement, a requirements decom- 
position is performed. The resulting architecture 
specifies requirements and interconnections for com- 
ponents and an obligation exists to verify the re- 
sulting decomposition is correct with respect to the 
entity's original requirements. 

In addition to functional requirements, con- 
straints play a large role in the architecture spec- 
ification. Constraints are also "decomposed" across 
collections of components. The simplest example 
of this activity is budgeting power consumption, 
weight or heat dissipation. When budgeting, a frac- 
tion of the value being constrained is assigned to 
each component in such a way that the initial con- 
straint is met. With heat dissipation and power, 
the sum of component constraint limits must not 
exceed the initial constraint limit. 

Although budgeting is common and useful, not 
all constraints can be managed in this straight- 
forward fashion. Maintainability, reliability, and 
reuseability are examples of constraints that cannot 
be budgeted across component collections. How- 
ever, the methodology continues to apply when a 
constraint model is developed and used to deter- 
mine when the decomposition meets the initial con- 
straint limit. Although developing a safety metric, 
for example, may be a difficult task, if one is devel- 
oped, it can be incorporated easily into the VSPEC 

model. 
Module fan-out is an example maintainability 

constraint that cannot be budgeted. Fan-out is 
the number of modules a single module decomposes 

architecture bat-seq of search is 
component sorter 

port (input: in array of element; 
output: out array of element); 

component bin_search 
port  (input: in array of element; 

key:  in integer; 
value: out element); 

begin 
bl: cl port map(x.y); 
b2: c2 port map(y,z); 

end bat-seq; 

entity sort is 
port  (input: in array of element; 

output: out array of element); 
modifies output; 
ensures bag(input) = bag(output) and 

sorted(output) 
constrained by 

power <= 3 mW and 
size <= 1 um * 2 urn 

end sort; 

entity bin_search is 
port (input: buffer array of element; 

k:  in integer; 
value:  out element); 

modifies out; 
requires sorted(input); 
ensures 

(forall e:element) 
output = e <=> key(e)=k and 

e in input 
constrained by 

power <= 1 mW and 
size <= 1 um * 2 urn 

end bin_search; 

Figure 4: VSPEC representation of a search architec- 
ture using a batch sequential approach. The origi- 
nal list is sorted and a binary search finds the de- 
sired object from the resulting list. 
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into. If fan-out is high, then the complexity of the 
decomposition may be too high to manage effec- 
tively. A VSPEC model of fan-out adds a fanout 
predicate to the constrained by clause. Specify- 
ing f anout (f) < 10 says the fan-out of the compo- 
nent must be less than 10. The underlying fan-out 
theory expresses that fan-out is the number of sub- 
modules a component has. This provides a means 
for checking fan-out in an evolving system. 

6    Design Process 

Using VSPEC and the VHDL architecture incre- 
mental design results in a tree generated by special- 
ization activities. Consider the earlier search prob- 
lem. In this design activity, the initial requirements 
are shown in Figure 2. These requirements com- 
pletely define the design problem specifying both 
function and constraint. 

When the high-level architecture, bat-seq (Fig- 
ure 4) is associated with the initial requirements, an 
incremental design decision is represented. This de- 
cision represents initial problem decomposition into 
interconnected search and sort components. These 
components each have their associated requirements 
and constraints. At this point in the design process, 
explicit constraint representation allows the user to 
check constraints. Namely, that power does not ex- 
ceed 5 mW and size does not exceed 15 urn. Naive 
constraint theories indicate that constraint budgets 
do not exceed high level constraints. Without ex- 
plicit representation, such verification would not be 
possible. Although these theories are naive, more 
realistic theories are easily encoded as REFINE spec- 
ifications. 

Functional requirements are also checked using 
pre- and post-condition comparison. In this case, 
I and O from the architecture match their corre- 
sponding specifications in the system description. 
Unfortunately, this will rarely be the case, thus re- 
quiring more complex checks. However, the require- 
ments are represented explicitly in the design rep- 
resentation and are available for verification. 

Assume finally that each component is expressed 
using behavioral VHDL and fabricated resulting in 
two hardware components. Fabrication results 
may be verified independently with some confidence 
their composition will meet requirements. Addi- 
tionally, if constraints cannot be met, trade-ofF de- 
cisions may be explored and verified within the con- 
text of the entire problem. 

7    Related Work 
7.1 Larch 

VSPEC is based on Larch's two-tiered specifica- 
tion approach and is a Larch Interface Language. 
VSPEC differs from existing Larch languages in its 
use of REFINE as its shared language. The Larch 
Shared Language [3] is a first order, algebraic lan- 
guage while REFINE is a broad-spectrum language 
that is both executable and formal. REFINE is 
used because its environment supports software 
synthesis while Larch is primarily useful for veri- 
fication, VSPEC's syntax is derived primarily from 
the Modula-3 interface language, LM3 [6]. 

7.2 VHDL Annotation Language (VAL) 
VSPEC is frequently compared to the VHDL An- 

notation Language (VAL) [7]. VAL is an annotation 
language used to describe pre- and post-conditions 
on VHDL input and output streams. In this respect, 
VAL and VSPEC are quite similar. However, sev- 
eral critical differences exist. First, VAL annotations 
translate into VHDL assert statements. An assert 
statement is a boolean valued function that causes 
an event to occur when triggered. The assert is 
much like an exception in a traditional program- 
ming language and is used for similar purposes. 
Once transformed into assert statements, the VAL 
model is simulated on input streams and the result 
compared to simulation of VHDL code for the same 
module, VSPEC has support for execution, but this 
is not its primary purpose. The logic used is not re- 
stricted to an executable subset. More importantly, 
the logic can be manipulated formally. 

VAL supports annotation of behavioral and struc- 
tural VHDL as well as the entity structure. Thus, 
VAL is an annotation language or design descrip- 
tion language rather than strictly a requirements 
language. 

Finally, VAL does not support constraint repre- 
sentation or checking. In the systems engineering 
environment, constraints are frequently more dif- 
ficult to meet than functional requirements. Fur- 
thermore, they must be recorded as a part of any 
requirements specification. 

7.3 ORA's Larch/VHDL 
ORA is currently developing a Larch/VHDL in- 

terface language. [8] In many respects, this language 
is similar to VAL in its attempt to model entire 
systems rather than simply modeling requirements. 
This language is manipulated formally, thus it is be- 
ing used to define a semantic model for VHDLLike 
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VAL, ORA's interface language supports only tim- 
ing constraints and it's usefulness is therefore lim- 
ited in the systems engineering area, VSPEC differs 
substantially, supporting only requirements specifi- 
cation and including both function and constraint. 
VSPEC also models timing as a constraint where 
ORA's language uses a temporal logic to model tim- 
ing attributes. 

8 Current Status and Future Direc- 
tions 

Currently, an initial Language Reference Man- 
ual for VSPEC is being developed. From the VSPEC 
LRM, a VSPEC parser and partial type checker have 
been developed using the DIALECT component of 
the SOFTWARE REFINERY[4]. This parser is avail- 
able via the world wide web and ftp. 

This version of VSPEC is limited to representing 
digital information as is VHDL. Plans exist to com- 
bine VSPEC with the ANAVHDL work underway 
at the University of Cincinnati. ANAVHDL sup- 
ports specification of both analog and digital com- 
ponents in the same system. As VSPEC is declar- 
ative and most circuit specifications are specified 
using equations, this combination is quite natural. 
Open and interesting problems include interfaces 
between analog and digital components and recon- 
ciliation of timing information from the digital and 
analog worlds. 

9 Summary 
VSPEC is a Larch interface language for VHDL 

designed to represent design requirements for syn- 
thesis activities, VSPEC design goals center on: 
(1) requirements representation independent of im- 
plementation; and (2) constraint representation. 
VSPEC adds declarative components that describe 
a component's functional requirements and con- 
straints. Axiomatic specifications describe func- 
tional requirements by defining input pre-conditions 
and output post-conditions. Predicates denned 
over constraint variables describe component con- 
straints, VSPEC supports descriptions of high-level 
architectures using structural VHDL and allows in- 
cremental design step representation. 
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Abstract 
Prototyping composite hardware/software systems 

requires synthesis of hardware, software and commu- 
nications protocols. Capabilities existio synthesize 
ASIC designs from a Pascal-like behavioral VHDL 
subset and capabilities are developing for transforming 
the same VHDL subset into standard software devel- 
opment languages. However, the process of synthesiz- 
ing behavioral VHDL from systems level requirements 
has not been addressed. Users are required to write 
behavioral VHDL descriptions of their components in 
a purely operational manner. This results in imple- 
mentational bias and premature hardware/software al- 
location decisions. We propose automating this pro- 
cess by expressing systems level requirements in a 
declarative specification language and using standard 
software synthesis techniques to generate behavioral 
VHDL from them. 

1    Introduction 
The overall goal of this research is synthesis of com- 

posite computing systems using traditional software 
synthesis techniques. A composite computing system 
is defined as a collection of computation units that 
maybe implemented either software of hardware com- 
ponents. To achieve this end, the high-level approach 
described in Figure 1, 

The general flow of information through the sys- 
tem is as follows: (a) Design requirements (includ- 
ing constraints) are parsed to generate a decorated 
abstract syntax tree used by synthesis processes; (b) 
the problem may be decomposed into components; (c) 
an algorithm is synthesized for each component; and 
(d) The assemblages of components, the general algo- 
rithmsjand abstract syntax tree are transformed into 
an appropriate design representation. Given this de- 
sign methodology, this research is decomposed into the 
following sub-goals: 

1. Representation of system and component require- 

ments. 
2. Generation of an intermediate form to support 

synthesis 
3. Synthesis of component designs 
4. Generation of output in an appropriate design 

;.';■'  representation language 

VSPEC/ 
VHDL 

Abstract-Syntax 
Tree 

Abstract-Syntax 
Tree 

Figure 1: Flow of information through the synthesis 
process 

This paper deals primarily with our specification 
language, called VSPEC, and the methods used to 
synthesize algorithms from requirements suitable for 
use in behavioral VHDL. VSPEC describes computa- 
tion units axiomatically, specifying an input precon- 
dition and an output post condition.1   VSPEC is a 

1The process of parsing VSPEC to generate the appropriate 
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Larch [5] interface language for VHDL that translates 
both into the Larch Shared Language [5] and the high 
level programming language REFINE. The transfor- 
mation of VSPECmto REFINE expresses the require- 
ments in an independent form suitable for use by var- 
ious software synthesis tools including KIDS {141 and 
BENTON [2]. 

1.1 Experimental Domain 
Our current domain is rapid prototyping of digi- 

tal signal processing systems. This work is directed 
towards automated synthesis of board- and MCM- 
level signal processors from systems level acquire- 
ments. This synthesis domain includes ASICs, off- i 
the-shelf components including CPUs, and embedded 
software. 

The design representation language for this effort 
is mandated to be VHDL for hardware components : 
and C for software components. In addition, allsoft- 
ware components will be specified in VHDL first, then 
transformed into C as required by the sponsoring 
agency. Selection of VHDL is due to the domain's het- 
erogeneous nature and the United States Department 
of Defense acceptance of VHDL as a systems repre- 
sentation language. Selection of C is due to the ready 
availability of C compilers for off-the-shelf digital sig- 
nal processors and existing capabilities for performing 
VHDL to C transformations. 

The general approach is synthesis of VHDL to rep- 
resent both hardware and software components. Ca- 
pabilities currently exist for transforming a rich subset 
of behavioral VHDL into RTL level VHDL suitable for 
synthesis and fabrication [11]. Capabilities also exist 
for transforming behavioral VHDL into compilable C i 
code. Thus, we can achieve our objective by taking 
a requirements description of a system, transform the 
requirements description into behavioral VHDL and 
synthesize hardware and software components. 

1.2 Axiomatic Specification 
Specifying computation units using axiomatic spec- 

ifications involves defining a transform hy specifying 
an input precondition and an output postconditions 
Given the input precondition holds, the 'transform 
must guarantee that the output postcondition is made 
true. Smith [13] suggests that such a specification be 
an algebra specifying the domain, range, input pre- 
condition and output postcondition. Thus, a function 
such as in Figure 2, may be described in terms of its 
domain (D), range (R), input precondition Ifo), and 
output postcondition, 0{x,z). When I(x) holds for 
some input x of type 2>, the procedure must return 
some element z- of type R such that 0(x, z) holds. A 
function F{x) = z satisfies this specification when for 
any x suchMiat I(x) holds, F(x) generates z such that 
0(x,z) hplds. Formally: 

\fx■": D »I(x) A F(x) = z=>3z: R*0(x, z)      (1) 

internal representation is a simple compiler problem. The pro- 
cess of generating VHDL source from REFINE [l] algorithms is 
a simple lateral transformation. 

This work relies on the assumption that hardware 
components may be specified in the same manner. 
Specifically, that the transform associated with a hard- 
ware component can be defined by an appropriately 
selected domain, range, input precondition and output 
postcondition. A second assumption is that such ax- 
iomatic specifications can be used to synthesize hard- 
ware components. The first assumption, that hard- 
ware can be specified axiomatically, is easily made and 
is commonly used in formal verification of hardware. 

: The second assumption is made based on the similarity 
between behavioral specification and traditional pro- 
gramming. The process component of VHDL sup- 
ports specification of behavior using an Ada-like lan- 
guage. If requirements for Ada programs can be syn- 
thesized from requirements, then it stands to reason 
that VHDL programs can. Semantically, VHDL and 
Ada differ substantially - the bulk of this paper ad- 
dresses some of those differences. 

2    VSPEC 
VSPEG-is a Larch interface language [5] for VHDL. 

The VSPEC interface language annotates the VHDL 
entity structure adding component requirements in 
terms of precondition, postcondition, performance 
constraints and state. Each structure in the VSPEC 
interface language translates into a formal definition 
in a shared language. VSPEC differs from a typical 
Larch interface language in that the primary shared 
language is REFINE rather than the Larch Shared Lan- 
guage (The reasons for this difference will be discussed 
later). To understand the VSPEC language, one must 
first have a cursory understanding of how VHDL rep- 
resents systems. 
2.1    VHDL 
;; VHDL [9] is a specification language for digital sys- 
tems whose structure and appearance is similar to 
Ada [15]. Although this structural similarity exists, 
it is somewhat deceiving because the semantics of a 
VHDL specification differ substantially from a simi- 
larly structured Ada program. 

A system is described in VHDL by describing 
■its constituent components and relationships between 
them. VHDL specifications consist of three fundamen- 
tal construct types: (a) entity constructs describing 
component interfaces; (b) one or more architecture 
constructs describing each component's behavior or 
structure; and (c) configuration constructs as- 
sociating entities with specific architectures. 
Thus, an entity represents an interface, several 
architectures represent behavior and structure, and 
a configuration indicates a specific architecture to 
represent the behavior of a component for a specific 
design task. 

2.1.1    Entity Structures 

An entity specifies the interface of each VHDL com- 
ponent much as an Ada public declaration specifies 
the interface of a procedure. The entity construct 
names the component and defines its ports. Ports 
are the hardware equivalent of parameters and rep- 
resent the inputs and outputs, their types, and the 
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; 2» 
 =» 

I(x)         0(x,z) 

—>■ 

—>■ 
function F(x:D) : R 

begin > 
Kx) 
— Function Body 

0(x,z) 
return z 

end; 

a) b) 

Figure 2: Axiomatic descriptions of: (a) a typical procedure; and (b) a typical hardware component. 

direction of data flow. VHDL entity structures are 
connected by connecting theory ports. Figure 3 is an 
entity describing a simple S-R latch. Note that the 
entity describes only the component interface, not its 
behavioral requirements or constraints. 

architecture behavior of sr_latch is 
begin 

q <= NOT  (qb AND s); 
qb <= NOT (q AND r); 

end behavior; 

entity sr_latch is 
port  (s,r:  in bit;  q,qb: 

end sr_latch; 
buffer bit); 

Figure 4: A VHDL architecture describing the be- 
havior of an S-R latch. 

Figure 3: A VHDL entity describing the interface to 
an S-R latch. 

Parameters denned in the port definition are re- 
ferred to as signals. Signals in VHDL are very similar 
to variables and parameters in a traditional program- 
ming language. Variables also exist in VHDL locally 
to processes, however in this work signal assignment is 
assumed to include variable assignment. When defin- 
ing the behavior of a VHDL entity, relationships be- 
tween input and output ports are defined, much as re- 
lationships between input and output parameters are 
defined in a traditional programming language. 

2.1.2    Behavioral Specification 

VHDL supports specification of a component's be- 
havior directly using ;an operational description lan- 
guage, or indirectly using an assembly of other com- 
ponents. Behavioral specification: involves writing a 
VHDL "program" in an operational VHDL subset 
similar in appearance to Ada. This subset includes 
familiar control structures and data types standard in 
procedural programming languages as well as signal 
assignment and synchronization constructs necessary 
to naturally specify hardware; components. Figure 4 
shows a behavioral description of the S-R latch. 

The means of specifying behavior used in Fig- 
ure 4 involves concurrent signal assignment state- 
ments. ;The values of q and qb are updated using the 
"<=" signal assignment operator. In this specification, 
value assignment to q and qb occurs simultaneously. 
Thus, the first assignment statement does not alter 
the program statelipripr to evaluating maintaining the 
original value of q for the second assignment state- 
ment. The VHDL code use|: to generate the assigned 

value is a driver. There should exist one and only one 
driver for each output signal. 

An alternative specification involves the use of 
process blocks. In a process, assignments do not oc- 
cur simultaneously and statements execute in a man- 
ner similar to a traditional programming language. 
Thus, the VHDL fragment from Figure 5 requires the 
introduction of a temporary variable as is traditional 
in an imperative language. Note that the two behav- 
iors specified using concurrent assignments and pro- 
cesses specify identical behaviors. 

architecture behavior of sr_latch IS 
begin 

pi: process 
variable tmp : bit; 

begin 
tmp  := q; 
q <= not  (qb and s); 
qb <= not  (tmp and r); 

end process; 
end behavior; 

Figure 5: A VHDL architecture describing the be- 
havior of an S-R latch using a single process. 

If multiple processes exist in an architecture, all 
processes execute simultaneously. Thus, concurrent 
assignment statements described previously are a 
shorthand notation for a collection of processes with 
single assignments to output signals. The process 
equivalent of Figure 4 is shown in Figure 6 

The parallels between process descriptions and 



299, 

architecture behavior of sr_latch is 
begin 

pi: process begin 
q <= NOT (qb AND s); 

end process; 
p2: process begin 

qb <= NOT  (q AND r); 
end process; 

end behavior; 

Figure 6: A VHDL architecture describing the be- 
havior of an S-R latch. 

traditional programming languages are exploited to 
synthesize behaviors for single entities. The objective 
is synthesis of code for process statements and/or 
concurrent assignments. Problems are decomposed 
with respect to output ports and composed using the 
concurrent assignment or process facilities. 

2.1.3    Structural Specification 

Structural specification involves specifying a collec- 
tion of VHDL entity components and connections : 
between them.  Using the component statemeht,;the | 
architecture specifies the components used in the as- 
semblage and assigns local names to ports. The body 
of the structural architecture names each local compo- 
nent, assigns a component from the declarative section 
to it, and specifies connections involving the local com- 
ponent using local parameter names. Figure 7 showsh 
a structural specification of an S-R latch. 

architecture structure of  sr^latch is 
component nor2 

port(a,b  :   in bit; :c   :   out bit); 
begin      » 

nl: nor2 port map|(s,qb,q); 
n2: nor2 port map (r,q,qb); 

end structure; 

Figure 7:   A VHDL architecture describing the 
structure of an S-R latch. 

Together the entity and architecture constructs 
describe a component's inputs, functional behavior 
and structure. Many architectures may exist for a sin- 
gle entity, thus the configurationstructure is used 
to specify what architecture should be associated with 
each entity. A typical VHDL design process involves 
specifying component interfaces, specifying behavior 
and refining the behavior to specify an-implementa- 
tion as a structural specification. 

Given a behavioral description, there are auto- 
mated and semi-automated means of refining that de- 
scription. It is currently possible to synthesize di- 
rectly implementable designs tfrpm behavioral VHDL 

as large as small CPUs [11]. Many commercial VHDL 
support-environments include synthesis subsystems. 
Thus, prototype system synthesis is achieved by gener- 
ating behavioral VHDL and using lower level synthesis 
tools to generate code, ASICs, and board layouts. 

2.2    VSPEC Entities 
VSPEC adds six declarative clauses to the VHDL 

entity: (1) the state clause declares variables repre- 
senting the state of the component; (2) the requires2 

states the component's precondition and is a function 
mapping entity input and state variables onto the 
boolean set* (3) the ensures clause states the compo- 
nent's post;condition and is a function mapping input, 
output and state variables onto the boolean set; (4) 
the modifies clause names input, output and state 
variables whose values may be changed by the com- 
ponent;; (5) the constrained by clause states perfor- 
mance constraints associated with the component; and 
(6) thei based ;on clause associates primitive and user 
defined types with shared language representations. 

Each clause-is stated as a logical expression (with 
the exception of themodif ies and based on clauses) 
in typed first order predicate calculus with equality, 
extended to include set and sequence theories. The 
only variables allowable in the logical expressions are 
defined in the entity's port definition, the VSPEC 
state clause, or defined locally in a logical expression 
as a quantified variable. All variables must be typed 
and typing requirements are checked by the VSPEC 

sparser. 
The VSPEC parser transforms each clause into 

a REFINE logical expression used to drive synthesis 
and analysis algorithms. Figure 8a shows a generic 

: VSPEC entity definition with each VSPEC clause. 

2;3    Representation of Architectures 
VHDL represents connected collections of compo- 

nents using architectures as shown in Figure 7. Com- 
ponents are connected and their parameters used to 
indicate interconnection. The example shown in Fig- 
ure 7 defines a two stage, batch sequential approach to 
searching a collection of values. The input list is sorted 
and a binary search is applied to the result of sort- 
ing. The architecture represents the batch sequen- 
tial approach by defining a sorting component, defin- 
ing a binary searching component, and connecting the 
outputs of the sorter to the inputs of the searcher. 
Note however that the search and sort component's 
implementation details are not specified. Specific al- 
gorithms must be synthesized at some later point. 

Thus, the architecture notion is used in conjunc- 
tion with VHDL entity components with VSPEC an- 
notation to represent system architectures. Represen- 
tation of requirements for multi-component systems 
also allows VSPEC to represent composite, multi- 
component systems by supporting specification of 
hardware executing software processes and complex 
device intercommunication. 

2In  earlier versions of VSPEC  and earlier papers,   the 
requires clause case called the assumes clause 



entity example is 
port (a,b: in bit; c: out bit); 

modifies c; 
state s: bit; 
requires I(a,b); 
ensures 0(a,b,s,c) and D(a,b,s,s'); 
constrained by Q; 

end example; 

a) 
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D = bitxbitx bit 
R = bitx bit 
I = R(a,bys) 
0 = 0(a,b,s,c)  A D(a,b,s,s') 
C = q 

b) 

Figure 8: VSPEC definition and associated tuple representation. 

entity search is 
port (input: buffer array of integer; 

key: in integer; 
value: out integer); 

modifies value; 
ensures 
V x : integer value = x   =£■   x   £ input; 

end example; 

architecture bat-seqSof search is 
component sorter .|f 
port (input: in array of integer; 

output: out array of integer); 
component bin_search 
port (input: in array of integer; 

key: in integer; 
value: out integer); 

begin 
bl:  cl port map(x,y); 
b2:   c2 port map(y,z); 

end; 

entity sort is 
port  (input:  in array of integer; 

output:  out array of integer); 
modifies output; 
ensures bag(input)   =   bag(output) A 

sorted(output 
end sort; 

entity bin_search is 
port (input: buffer array of integer; 

key:  in integer; 
value:  out integer); 

modifies out; 
requires sorted{input); 

V x :   integer value = x   =>■   x   6   input; 
end bin_search; 

Figure 9: Using a VHDL architecture to represent general structures. Note that a VSPEC entity is used to 
represent the requirements of each component 



301 

3 Parsing VSPEC 
Algorithm synthesis does not operate on raw 

VSPEC. Before algorithm synthesis begins, the 
VSPEC definition is parsed into a decorated abstract 
syntax tree. The abstract syntax tree is represented 
using the REFINE object-base and the parser written 
in the DIALECT system. 

In the abstract syntax tree, each entity is repre- 
sented by its constituent components from the inter- 
face language. Namely, the port and state clauses 
representing the system interface and internal state, 
the input precondition, the output post condition, and 
any existing performance constraints. Together, these : 
define a specification as a problem theory [13] support- ^ 
ing use of KIDS and other similar transform systems.; 

The abstract syntax tree 
also represents architectures. Each architecture i: 
is linked to the entity representing its interface and i 
requirements. Refining our synthesis objective leads 
to the goal of associating each entity with at least 
one architecture with a behavior description, or a 
structural description whose components have com- 
plete behavioral descriptions at some level of abstrac- 
tion. Figure 8b shows the result of parsing a VSPEC 
entity. 

4 VHDL Synthesis From VSPEC 
After VSPEC is parsed into the abstract syntax 

tree form, synthesis activities begin. For each entity, 
a suitable architecture must be synthesized. From 
the port descriptions and VSPEC clauses, a domain 
theory is formed and represented using the DRIO no- 
tation proposed by Smith [12,13, 14]. The user guides 
the selection of a general structure involving either a ; 
single, behavioral architecture, or structural architec- 
ture specifying a configuration of components. 

4.1    Synthesis Goals 
Although VHDL and Ada share structural similar"" 

ities, VHDL should not be:viewed as"simply a pro- 
gramming language. Several characteristics of VHDL 
representations must beiaccounted for in the synthesis 
process. These include the co-existence of entities, 
the state machine nature of entity descriptions, signal 
attributes, and concurrent assignment. 

A naive examination of VHDL may lead to the 
belief that the entity component iis equivalent to a 
procedure or function in a traditional imperative lan- 
guage. Thus, connections between components de- 
fine a sequential control flow. In a VHDL descrip- 
tion, entity components represent concurrently ex- 
isting devices and processes. Activation of compo- 
nents occurs due to parameter changes, not due to 
explicit calls: and parameter passing. Each entity 
description has a sensitivity list indicating what pa- 
rameter changes can cause its invocation. When in- 
voked, the architecture implementing the entity is 
executed to completion, interacting with other entity 
structures only through changing port values and wait 
statements. Although an entity is the basic comput- 
ing element in VHDL as a procedure is in Ada, an 
entity's behavior more closely represents a process 
than a procedure. 

The general goal of a VHDL synthesis activity 
driven by a VSPEC specification is to synthesize a 
function,: i?(:r), such that: 

Vx : D • I(x) =» 3z[; R • 0{x, z) A £(z) = z      (2) 

where: 

- D is the cartesian product of sorts associated with 
in, inout and buffer parameters. 

- R is the cartesian product of sorts associated with 
out, inout parameters and only those buffer pa- 
rameters named in the modifies clause. 

- I(x) is the input precondition defined in the 
requires clause. 

: -Ö(x, z) is the output postcondition defined in the 
ensures clause. 

4.2     State Based Solutions 
VHDL reflects the common view of hardware com- 

ponents as state machines. Unlike a typical subpro- 
gram, an entity's local storage is not initialized for 
each invocation - local variables and some parameters 

: maintain their previous values. Thus, values of lo- 
cally defined signals and variables, and ports define 
the state of the component. In Figure 4, the previ- 
ous values of;q and qb are used to generate the next 

; values. 
The structure of a traditional axiomatic specifica- 

tion from Section 1.2 is defined over the inputs and 
outputs of the specified component. No mention is 
made of the internal state of the component. The 
brute force approach would be altering the entity 
definition to include state variables as inputs. 

State-based system synthesis is achieved by synthe- 
sizing a transform that includes anything maintaining 
its state from one invocation to the next as a part of 
both the domain and range of the transform. Con- 
sider the VSPEC example from Figure 8. To satisfy 
this VSPEC specification, we must synthesize one or 
more transforms that collectively satisfy: 

D = bitxbitxbit 
R = bitxbit 
I(x:D) = R(a,b,s) 
0(x:D,z:R) = 0(<a,b,s>,x) A D(<a,b,s>,s) 

The domain and range of the entity being syn- 
thesized are different than the domain and range of 
the synthesis goal. The entity domain and range are 
both augmented to include types of state variables. 
Thus, the synthesized function will produce values for 
entity output signals and signals and variables main- 
taining state. The state variables of a VSPEC entity 
include and variables defined in the state clause and 
ports defined as type buffer, out, or inout. The syn- 
thesis goal stated earlier is modified such that the do- 
main and range include values of state variables. Ap- 
propriate buffer signals have already been included 
in the original domain. 
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Note the single function produces state transition 
and output. Thus, the resulting system is either a 
Moore or Mealy type machine depending on the sig- 
nals and variables involved in calculating outputs. 

4.3 Managing Concurrency 
Behavioral VHDL heavily utilizes concurrent signal 

assignment and concurrent processes. Viewed as a se- 
quential program, the specification from Figure 4 is 
incorrect. The contents of q would be updated before 
qb replacing the previous q needed for qb. This is an 
example of the classic value swap problem in tradi- 
tional programming languages. In behavioral VHDL, 
these assignments occur concurrently. When assign- 
ments occur concurrently, the specification will func- 
tion correctly. 

Concurrent assignments and concurrent processes 
begin from the same state and cause state changes 
at the same time. Thus, any problem may be de- 
composed into processes that generate outputs for a 
subset of output signals. If no output signal is driven 
by multiple assignments and processes do not inter- 
act via wait statements or shared local variables, the 
composition of those processes is trivial. Full advan- 
tage of the independence of processes and assignments 
is taken when partitioning problems. 

4.4 Partitioning 
The brute force synthesis approach is to generate 

an algorithm that accepts an element from D and gen- 
erates an appropriate element of R. This function is 
translated into a single VHDL process that executes 
and updates all output signals. Figure 10 illustrates 
such a transform. 

A more appropriate synthesis method takes advan- 
tage of the VHDL process and concurrent signal as- 
signment concepts. The requirements of each func- 
tion being synthesized is decomposed into require- 
ments for each signal, or requirements for disjoint sub- 
sets of signals defined in |he function'si range. When 
evaluating concurrent signal assignments, each signal 
driver is evaluated independently from the same ini- 
tial state and results are concurrently assigned to out- 
puts. Thus, the evaluation of each driver has ho effect 
on other drivers. 

When synthesizing functions for drivers, full advan- 
tage is taken of this independence;: The synthesis obli- 
gation is decomposed into several simpler obligations 
for subsets of the output signals. These functions are 
composed as processes in an architecture. The compo- 
sition will be correct if: (a) each output signal appears 
on the left sideof an assignment in only one driver; (b) 
the conjunction of postconditions from each driver sat- 
isfies the overall postcondition; arid (c) satisfying the 
input condition implies the input condition of each 
driver is satisfied. 

Formally, synthesizing algorithms for collections 
of signals involves generating the set of functions 
/i,/2,— ,/n where Dk,Rk,Ik(x),Ok(x,z) and Ck de- 
scribe the domain, range, input condition, output con- 
dition and constraints of fk(x). The following two 
conditions must also hold: 

I(x)=> f\Ik(xk) 
k=l 

/\Ök(xk,Zk)=>0(x,z) 

(3) 

(4) 
fc=i 

Equation 3 assures that if the overall input precon- 
dition is met, individual driver preconditions are also 
met. If this were not the case, then it would be pos- 
sible for a function to fail when the precondition of 
the overall:entity is met. Equation 4 assures that if 
each driver postcondition is satisfied, the overall out- 
put condition is satisfied. If this were not the case, 
then the collection of synthesized functions will not 
necessarily generate all necessary output values. 
. If the mapping from each output or state variable to 
the function that generates it is injective, then a driver 
is synthesized for each output. Thus, concurrent sig- 
nal assignments are used to assemble the drivers into 
a single component. Otherwise, a process and nec- 
essary local storage are created for each driver. Both 
options are shown in Figure 11. 

It should be noted that each of the drivers syn- 
thesized functions independently. From a synthesis 
perspective, this eliminates the need to verify that no 
harmful interactions occur between drivers. However, 
a system is rarely developed as a collection of inde- 
pendent components. To synthesize realistic VHDL 
systems, multi-component systems with realistic de- 
grees of interaction must be synthesized. 
4.5    Signal Attributes 

Software systems deal primarily with stable vari- 
able values. Hardware representation systems must 
represent not only signal values, but how those values 
change. Consider a device with a leading-edge driven 
clock: If the clock is viewed as a binary value, only two 
states can be represented. VHDL provides function 
attributes of the form sym 'att where sym is a defined 
symbol name and att is an attribute defined for that 
Symbol. Attributes such as delayed, stable, quiet, 
and transaction are defined for all symbols repre- 
senting signals. For example, the event attribute re- 
turns a true value if its associated signal just changed 
values. Thus, the following VHDL statement repre- 
sents the conditional for an event that should occur 
on the rising edge of signal elk: 

clk='l' and elk'event 

Managing signal attributes appears to be a diffi- 
cult problem. However, defining predicates and the- 
ories for needed attributes supports their inclusion in 
the specification process. The elk'event attribute 
reference can easily be represented as the predicate 
event (elk). Furthermore, adjusting the syntax of the 
interface language allows specification of the attribute 
using the VHDL form. Figure 12 shows an adaptation 
of the SR latch specification to include a clock signal 
and form an edge triggered flip-flop. 

Although some VHDL characteristics may not feel 
natural to a traditional programmer, they are quite 
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entity sr_latch is 
port (s,r : in bit, 

q,qb: buffer bit) 
ensures 

q' = "(s and qb) and 
qb' = "(r and q) 

end sr_latch; 

function sr_latch(s,r,q,qb: bit) 
:  tuple(bit,bit) 

<not(s and qb), not(r and q)> 

architecture mono of sr_latch is 

procedure sr_char(s,r,q,qb:  in bit; 
nq,nqb:  out bit)  is 

begin 
nq  :- not(qb and s); 
nqb  :- not(q and r); 

end sr_char; 

begin 
bl:  process 

variable nq, nqb: bit; 
begin: 

sr_char(s,r,q,qb,nq,nqb); 
q <= nq; 

- v.: ■■-,: v' qb: <= nqb; 
"""■■■;end process; 

end mono; 

Figure 10: Monolithic algorithm synthesis for a single VHDL entity. 

architecture proc of test is architecture concur of test is 
bl:  process ^  <= fi(xi); 

variable tmpi,tmp2.. impk :   Ri it <= J2^-i)\ 
fi(.xi,tmpi,tmp2...,trnpk); ... 
zi  <= tmpn "%>::■<= fn(Xn); 
Z2 <= tmp2\ end concur; 

zu <= tmpk 
end process; 
b2: process 

variabl e trnpi+i, t mpk+2.. .tmpj   :  R2 
f2(x2,trnpk+i ,tmpk+2- ■ ..tmpj); 
Zk+i <= tmpk+i; 
Zk+2  <= tmpk+f, 

Zj <= tmpj 
end process; 

bm:  process 
variable tmpn_i,tmpn   :  Rm 

fmixm,impn^i,tmpn); 
zn_i <= impn-i; 
zn <=tmpn) 

end process; 
end proc; 

Figure 11: Assembling multiple algorithms into a single component using processes and concurrent signal assign- 
ment. 
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entity re_sr_latch is 
port (s,r : in bit, 

q,qb: buffer bit, 
elk: in bit) 

ensures 
(clk=i and event(elk) and 
q' = "(s and qb) and 
qb' = "(r and q)) 

or 
(q'=q and qb'=qb) 

end re_sr_latch; 

Figure 12: SR latch specification modified to specify 
a rising edge triggered SR flip-flop. 

natural to hardware designers. In addition, each can 
be specified using traditional, axiomatic specification 
techniques. However, any successful VSPEC-related 
tool must be used by hardware designers. Thus, 
specification of this type of characteristic in VSPEC 
and synthesis of VHDL supporting these characteris- 
tics must be supported by VSPEC. This is the pri- 
mary reason for using a Larch interface language - 
the designer works in a language supporting tradi- 
tional hardware specification techniques and familiar 
constructs that have a formal interpretation. 

5    Synthesis Techniques 
Given the result of parsing a VSPEC entity, one 

may employ any number of synthesis techniques to 
derive an algorithm for the transform. In this work, 
formal synthesis techniques are employed. Specifically, 
a case-based reasoning approach based on the CY- 
PRESS [12] operator-match problem solving technique 
and interfacing with KIDS [14]. 
5.1    Algorithm Synthesis 
5.1.1 Direct Transformation 

The simplest algorithm specification technique avail- 
able is direct transformation. It should be used when 
the structure of the specification directly reflects the 
structure of VHDL used to implement it. The spec- 
ification is transformed using simple syntactic tech- 
niques to generate VHDL code. This technique is 
similar to the specification to code option available 
in KIDS and other automatic programming systems. 

5.1.2 Case-Based Reasoning 

Case-based reasoning [10] uses similarities between 
problems to select solutions. The assumption is 
that similarity between problems implies similarity 
between: solutions. In the BENTON system, case- 
based reasoning is used to retrieve and reuse specifica- 
tions [2]. The same techniques are used to retrieve and 
reuse VHDL fragments described by VSPEC specifica- 
tions. VSPEC is used to generate features from both 
the problem and potential solutions for similarity cal- 
culation. Case-based reasoning is useful primarily for 

retrieving potential solutions, but does not guarantee 
validity of the solution. Thus, after the solution is re- 
trieved and adapted, a further proof obligation exists. 
VSPEC makes this obligation simpler and supports 
means for correctness preserving adaptation using de- 
rived antecedent, but it does not avoid the obligation. 

5.1.3    Formal Transformation 

The chief algorithm synthesis tool is KIDS [14, 13]. 
KlDS is based on the formal composition of an algo- 
rithm theory representing a problem solving method- 
ology and a domain theory representing the prob- 
lem itself. The DRIO specification generated by the 
VSPEC parser is motivated chiefly by specification 
format used by KIDS, however other synthesis systems 
frequently use similar means for representing specifi- 
cations [8]. 

In order to generate algorithms using KIDS, one 
must specify a complete domain theory, of which the 
specification itself is only a part. One must also use 
REFINE to specify laws and auxiliary functions that 
define the transform itself. The transformation from 
interface language to REFINE accomplishes some of 
this along with libraries of general theories describing 
operators over types. In general, specifications beyond 
those directly specified by VSPEC are required for the 
synthesis process to complete effectively. 

5.2    Architecture Synthesis 
The most active area of this research is synthesis of 

multi-component systems. Given a high level VSPEC 
specification, generate a system involving a collection 
of interconnected entity's rather than simply a col- 
lection of independent processes. 

5.2.1 Case-Based Reasoning 

The simplest technique currently used is applying 
case-based reasoning to retrieve and adapt multi- 
process architectures. Architectures take the form of 
procedural networks with each action representing a 
single component. In a typical procedural network, 
an action is represented by a precondition and post- 
condition, thus the representation adapts naturally to 
specification of some architectures. Actions are spe- 
cialized using algorithmic synthesis techniques, an- 
tecedent derivation, or heuristic adaptation. As be- 
fore, the results of some adaptation processes require 
that the resultant algorithm be verified. If the archi- 
tecture is known to be correct and is specialized using 
correctness preserving operations, verification is typi- 
cally not required. 

5.2.2 Formal Synthesis 

General architectures can be synthesized using the 
KIDS approach by developing algorithm theories 
to support architecture synthesis and by using 
antecedent derivation to discover missing compo- 
nents [3]. The batch sequential architecture for the 
search entity shown in Figure 9 can be synthesized 
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by selecting the binary search algorithm and using its 
precondition to derive the sort ENTITY. 

The binary search algorithm takes a key value and 
a list of elements and returns the value discovered in 
the list. The precondition of binary search is that the 
input list must be ordered. Other preconditions may 
also be derived to fit this algorithm to the problem. 
There is no precondition associated with the search 
entity driving the synthesis process, thus there is no 
assurance that the collection of inputs will be in or- 
der. Thus, a component must be developed to prepare 
the original input for use by the binary search routine. 
This technique is very similar to techniques used by 
CYPRESS and kids to synthesize divide-and-conquer : 
algorithms [12]. The specification of this new compo- 
nent will be as follows: 

- D = D, 
- R=Dbs 
- I(x) = /.(*) 
- 0(x, z) = Ibs(z) 

where DS,RS>... are associated with the original 
search specification and Dbs, Rts, ■ ■ ■ are associated 
with the binary search specification. The resultant 
specification is almost the sorting specification with 
no precondition and a sorted output condition. Note 
the missing bag(x)=bag(z) element in the generated i 
specification. 

Arbitrarily complex sequences of entity's may be 
specified in this manner by: (a) repeating the batch 
sequential process for discovered components; arid;;(.b) 
generating similar techniques for batch parallel and 
conditional branching. Note that a control strategy isr' 
not proposed here. The user must make control deci- 
sions at each synthesis stage. Thus, problems associ- 
ated with some planning algorithms can be avoided. 

5.2.3    Non-Sequential Architectures 

The antecedent derivation techniques can effectively 
generate architectures where a clear order- of execution 
exists and components do not engage in bidirectional 
communication.3 Consider specification of a pair of 
transceivers or synchronously communicating devices. 
In order to synthesize such system using KIDS tech- 
niques, general algorithm theories must be developed 
describing various architectures. Antecedent deriva-- 
tion is useful even in these situations, but discover- 
ing missing components should eventually give way to 
specializing known architectures to specific problems. 

6    ttelated Work 
The approach taken in constructing the VSPEC 

language is based heavily on the Larch/Modula-3 in- 
terface language [7]. Another parallel effort in de- 
veloping a Larch interface language is underway at 
Odyssey Research Associates [6]. This interface lan- 
guage uses the Larch Shared Language rather than 

3 It has not been determined that antecedent derivation can- 
not be used for such situations. It simply has not been demon- 
strated that it can. 

REFINE and is targeted towards formal VHDL veri- 
fication, not synthesis. The techniques used in this 
work are being extended from Penelope [4], an Ada 
verification system. VSPEC could potentially support 
verification, however its prime motivation is driving 
synthesis processes.     ;: 

Most of the synthesis aspects of this work and the 
specification of components in terms of domain, range, 
input precondition and output postcondition is based 
on application of algorithm theories to program syn- 
thesis. These techniques were proposed by Smith 13 
and implemented in the CYPRESS [12] and KIDS [14" 
systems. 

7    Future Directions 
: Three directions currently dominate this research 

effort: (1) development of KIDS algorithm theories for 
general architectures; (2) management of constraints 
during the design activity; and (3) migration of the 
general technique away from VHDL. 

An algorithm theory represents a general problem 
solving technique. Using a multi-component architec- 
ture is one such general technique, however no theory 
exists for its application in the current KIDS system. 
To extend these techniques to larger systems, general 
algorithm theories must be developed. Proposed tech- 
niques for batch sequential systems are shown here 
and similar techniques are proposed for batch parallel. 
However, more complex architectures must be devel- 
oped, particularly for communicating systems. 

Currently VSPEC represents several types of con- 
straints. At each stage in the design process, these 
constraints can be checked in the abstract syntax tree. 
Thus, constraint violations can be detected. Of par- 
ticular difficulty is management of propagation time. 
Odyssey Research Associates [6] takes the approach 
of associating events with time points in the interface 
language. This requires using a temporal logic in the 
verification activity. VSPEC uses an interval represen- 
tation to define the time from input signal(s) arrival 
to output signal(s) generation. This separates timing 
issues from the functional specification. Although tim- 
ing constraints can be verified, they must be included 
in the actual synthesis process eventually. 

Finally, the Generic Abstract Syntax Tree (GAST) 
is being developed to serve as a general representation 
for systems requirements. The objective is to either 
adapt VSPEC to new source languages or use existing 
Larch interface languages to generate GAST require- 
ment representations. A parser is written to generate 
GAST from each language and synthesis (and poten- 
tially analysis) tasks performed on the GAST repre- 
sentation. The resulting algorithms plus the GAST 
representation are transformed into the output lan- 
guage of choice. Note that both the input parsing 
and output transformation are purely syntactic activ- 
ities, thus existing technologies can be used to con- 
struct these components. Using taking this approach, 
VSPEC techniques may be more generally inserted in 
the systems development and prototyping process. 

10 
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